Injectional multilens molding parameters optimization
N.L. Kazanskiy, I.S. Stepanenko, A.I. Khaimovich, S.V. Kravchenko, E.V. Byzov, M.A. Moiseev

 

Samara State Aerospace University, Samara, Russia,
Image Processing Systems Institute, Russian Academy of Sciences, Samara, Russia

Full text of article: Russian language.

Abstract:
A technique for controlling and optimizing injection molding parameters by numerical simulation is proposed. Using this method for an optical element designed for roadway lighting, multilens molding quality criteria have been defined. Optimal parameters for lens manufacturing have been determined. Based on these parameters, a polycarbonate multilens has been made with an absolute tolerance equal to 0.01 mm.

Keywords:
injection molding, optical element, intensity distribution, free-form surface, Taguchi’s method.

Citation:
Kazanskiy NL, Stepanenko IS, Khaimovich AI, Kravchenko SV, Byzov EV, Moiseev MA. Injectional multilens molding parameters optimization. Computer Optics 2016; 40(2): 203-214. DOI: 10.18287/2412-6179-2016-40-2-203-214.

References:

  1. Taguchi G, Clausing D. Robust quality. Harvard Business Review 1990; 68(1): 65-75.
  2. Thanh HV, Chen CCA, Kuo CH. Injection Molding of PC/PMMA Blend for Fabricate of the Secondary Optical Elements of LED Illumination. Advanced Materials Research 2012; 579: 134-141.
  3. Jaworski M, Bakharev A, Costa F, Fried C. Applying simulation to optimize plastic molded optical parts. Proc SPIE 2012; 8489: 848906.
  4. Chen C-P, Chuang M-T, Hsiao Y-H, Yang Y-K, Tsai C-H. Simulation and experimental study in determining injection molding process parameters for thin-shell plastic parts via design of experiments analysis. Expert Systems with Applications 2009; 36(7): 10752-10759.
  5. Kravchenko SV, Moiseev MA, Doskolovich LL. Design of refractive optical elements with two free-form surfaces for generation of prescribed illuminance distribution. Computer Optics 2014; 38(3): 435-442.
  6. Winston R, Miñano JC, Benítez P. Nonimaging Optics. Elsevier Academic Press; 2005.
  7. Moiseev MA, Doskolovich LL, Borisova KV, Byzov EV. Fast and robust technique for design of axisymmetric TIR optics in case of an extended light source. J Mod Opt 2013; 60(14): 1100-1106.
  8. Chen H-C, Lin J-Y, Chiu H-Y. Rectangular illumination using a secondary optics with cylindrical lens for LED street light. Opt Express 2013; 21(3): 3201-3212.
  9. Kravchenko SV, Moiseev MA, Doskolovich LL, Kazanskiy NL. Design of axis-symmetrical optical element with two aspherical surfaces for generation of prescribed irradiance distribution. Computer Optics 2011; 35(4): 467-472.
  10. Elmer WB. Optical design of reflectors. App Opt 1978; 17(7): 977-979.
  11. Lin KCh. Weighted least-square design of freeform lens for multiple point sources. Opt Eng 2012; 51(4): 043002.
  12. Benitez P, Minano JC, Blen J, Mohedano R, Chaves J, Dross O, Hernandez M, Falicoff W. Simultaneous multiple surface optical design method in three dimensions. Opt Eng 2004; 43(7): 1489-1502.
  13. Bruneton A, Bäuerle A, Wester R, Stollenwerk J, Loosen P. High resolution irradiance tailoring using multiple freeform surfaces. Opt Express 2013; 21(9): 10563-10571.
  14. Ma Y, Zhang H, Su Z, He Y, Xu L, Li H. Hybrid method of free-form lens design for arbitrary illumination target. App Opt 2015; 54(14): 4503-4508.
  15. Kravchenko SV, Byzov EV, Moiseev MA, Doskolovich LL. Design of optical elements with two refractive surfaces to generate a prescribed intensity distribution. Computer Optics 2015; 39(4): 508-514. DOI: 10.18287/0134-2452-2015-39-4-508-514.
  16. Doskolovich LL, Moiseev MA, Bezus EA, Oliker V. On the use of the supporting quadric method in the problem of the light field eikonal calculation. Opt Express 2015; 23(15): 19605-19617.
  17. Michaelis D, Schreiber P, Bräuer A. Cartesian oval representation of freeform optics in illumination systems. Opt Lett 2011; 36(6): 918-920.
  18. Oliker V, Rubinstein J, Wolansky G. Supporting quadric method in optical design of freeform lenses for illumination control of a collimated light. Adv Appl Math 2015; 62: 160-183.
  19. Doskolovich LL, Moiseev MA, Kazanskiy NL. On using a supporting quadric method to design diffractive optical elements. Computer Optics 2015; 39(3): 339-346.
  20. Born M, Wolf E. Principles of optics. Cambridge: Cambridge University Press, 2003.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; e-mail: ko@smr.ru; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20