Нанофокусировка с помощью заострённых структур
Дегтярев С.А., Устинов А.В., Хонина С.Н.

Институт систем обработки изображений РАН,
Самарский государственный аэрокосмический университет имени академика С. П. Королёва
(национальный исследовательский университет) (СГАУ)

Аннотация:
В работе показана возможность нанофокусировки в ближнем поле не только с помощью металлических, но также и диэлектрических структур с резкими краями. Исходя из векторных интегралов Рэлея-Зоммерфельда, показан эффект экстраординарного усиления продольной компоненты электромагнитного поля вблизи разрывов функции падающего поля, связанных с резкими скачками в рельефе оптического элемента. Методом конечных элементов выполнено моделирование дифракции электромагнитного излучения на остриях металлических структур, а также диэлектрических структур, имеющих высокий показатель преломления. Показано, что получаемый размер фокусного пятна по полуспаду интенсивности FWHM (full width at a half maximum) почти прямо пропорционально зависит от радиуса кривизны острия структуры. Для острой фокусировки предложена оптическая схема, состоящая из накопителя, собирающего и направляющего излучение на нанофокусатор. В качестве накопителя предлагается использовать рефракционный аксикон, собирающий излучение на свою вершину, где располагается нанофокусатор - алюминиевая или кремниевая наносфера. При этом необходимо освещать аксикон пучком с вихревой фазовой зависимостью первого порядка или радиально-поляризованным пучком. Предложенная схема способна обеспечить локализацию излучения в световом пятне размером FWHM = l/400.

Ключевые слова :
микрооптика, субволновые структуры, сингулярная оптика, нанофокусировка, эффект громоотвода, метод конечных элементов.

Литература:

  1. Chen, W. Numerical study of an apertureless near field scanning optical microscope probe under radial polarization illumination / W. Chen, Q. Zhan // Optics Express. - 2007. - Vol. 15(7). - P. 4106.
  2. Wang, J. Development and prospect of near-field optical measurements and characterizations / J. Wang, Q. Wang, M. Zhang // Frontiers of Optoelectronics. - 2007. - Vol. 5(2). - P. 171-181.
  3. Nalimov, A. Hyperbolic secant slit lens for subwavelength focusing of light / A. Nalimov, V. Kotlyar // Optics Letters. - 2013. - Vol. 38(15). - P. 2702-2704.
  4. Gramotnev, D.K. Nanofocusing of electromagnetic radiation / D.K. Gramotnev, S.I. Bozhevolnyi // Nature Photonics. - 2014. - Vol. 8. - P. 14-23.
  5. Novotny, L. Near-field imaging using metal tips illuminated by higher-order Hermite-Gaussian beams / L. Novotny, E.J. Sanchez, X.S. Xie // Ultramicroscopy. - 1998. - Vol. 71. - P. 21-29.
  6. Zhang, J. Nanostructures for surface plasmons / J. Zhang, L. Zhang // Advances in Optics and Photonics. - 2012. - Vol. 4(2). - P. 157-321.
  7. Ермушев, А.В. Поверхностное усиление локальных световых полей и "эффект громоотвода" / А.В. Ерму­шев, Б.В. Мчедлишвили, В.А. Олейников, А.В. Петухов // Квантовая электроника. - 1993. - Т. 20, № 5. - С. 503-508.
  8. Khonina, S.N. Controlling the contribution of the electric ?eld components to the focus of a high-aperture lens using binary phase structures / S.N. Khonina, S.G. Volotovsky // Journal of the Optical Society of America A. - 2010. - Vol. 27(10). - P. 2188-2197.
  9. Хонина, С.Н. Острая фокусировка лазерного излучения с помощью двухзонного аксиального микроэлемента / С.Н. Хонина, Д.А. Савельев, А.В. Устинов // Компьютерная оптика. - 2013. - Т. 37, № 2. - С. 160-169.
  10. Дегтярев, С.А. Исследование возможности субволновой локализации излучения за счёт формирования близкорасположенных сингулярных линий с помощью субволновых деталей диэлектрического микрорельефа / С.А. Дегтярев, С.Н. Хонина // Компьютерная оптика. - 2013. - Т. 37, № 4. - С. 426-430.
  11. Bezus, E.A. Eva-nescent-wave interferometric nanoscale photolithography using guided-mode resonant gratings / E.A. Bezus, L.L. Doskolovich, N.L. Kazanskiy // Microelectronic Engineering. - 2011. - Vol. 88(2). - P. 170-174.
  12. Безус, Е.А. Формирование интерференционных картин затухающих электромагнитных волн для наноразмерной литографии с помощью волноводных дифракционных решеток / Е.А. Безус, Л.Л. Досколович, Н.Л. Казанский // Квантовая электроника. - 2011. - Т. 41, № 8. - C. 759-764.
  13. Устинов, А.В. Анализ дифракции плоского пучка на рассеивающем фраксиконе в непараксиальном режиме / А.В. Устинов, С.Н. Хонина // Компьютерная оптика. - 2014. - Т. 38, № 1. - С. 42-50.
  14. Alferov, S.V. Study of polarization properties of fiber-optics probes with use of a binary phase plate / S.V. Alfe­rov, S.N. Khonina, S.V. Karpeev // Journal of the Optical Society of America A. - 2014. - Vol. 31(4). - P. 802-807.
  15. Хонина, С.Н. Высокоапертурные бинарные аксиконы для формирования продольной компоненты электрического поля на оптической оси при линейной и круговой поляризации освещающего пучка / С.Н. Хонина, Д.А. Са­вельев // Журнал экспериментальной и теоретической физики. - 2013. - Т. 144, Вып. 4(10). - С. 718-726.
  16. Musa, S.M. Computational Finite Element Methods in Nanotechnology. - CRC Press. 2012. - 640 p.
  17. Handbook of Optical Constants of Solids / ed. by E.D. Pa­lik. - Academic, 1998.
  18. Устинов, А.В. Расчёт комплексной функции пропускания рефракционных аксиконов / А.В. Устинов, С.Н. Хо­нина // Компьютерная оптика. - 2011. - Vol. 35(4). - C. 480-490.
  19. Савельев, Д.А. Влияние субволновых деталей микрорельефа на картину дифракции Гауссовых пучков / Д.А. Савельев, С.Н. Хонина // Вестник Самарского государственного аэрокосмического университета им. академика С.П. Королёва (национального исследовательского университета). - 2014. - № 1(43). - С. 275-286.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: ko@smr.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20