Сравнение изображений по форме с использованием диффузной морфологии и диффузной корреляции
Визильтер Ю.В., Горбацевич В.С., Рубис А.Ю., Выголов О.В.

ФГУП «Государственный научно-исследовательский институт авиационных систем» (ФГУП «ГосНИИАС»)

 

DOI: 10.18287/0134-2452-2015-39-2-265-274

Аннотация:
Сравнение изображения с формой другого изображения или сравнение форм двух изображений позволяет сравнивать фрагменты изображений одной сцены, полученных в различных условиях освещённости, погодных условиях или в различных спектральных диапазонах. Наиболее популярным методом сравнения форм изображений является подход, основанный на использовании взаимной информации. Другой известный подход к сравнению изображения с формой другого изображения предложен в морфологии Пытьева. В данной статье предлагаются новый метод сравнения изображений по форме на основе диффузных операторов и диффузной корреляции, а также соответствующий обобщённый формализм диффузной морфологии. Описана быстрая реализация алгоритма диффузной фильтрации. Проведено экспериментальное сравнение разработанного метода диффузной корреляции с другими методами сравнения по форме применительно к задаче взаимной привязки ТВ- и ИК-изображений.

Ключевые слова:
математическая морфология, сравнение изображений, диффузные операторы.

Литература:

  1. Maes, F. Multimodality Image Registration by Maximization of Mutual Information / F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, P. Suetens // IEEE Transactions on Medical Imaging. – 1997. – Vol. 16(2). – P. 187-198. – ISSN 0278-0062.
  2. Pyt’ev, Yu.P. Morphological Image Analysis / Yu.P. Pyt’ev // Pattern Recognition and Image Analysis. – 1993. – Vol. 3(1). – P. 19-28. – ISSN 1555-6212.
  3. Vizilter, Yu.V. Geometrical Correlation and Matching of 2D Image Shapes / Yu.V. Vizilter, S.Yu. Zheltov // ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. – Vol. 1(3). – P. 191-196.
  4. Визильтер, Ю.В. Реляционные модели формы изображений и метрики их сравнения / Ю.В. Визильтер, В.С. Горбацевич, А.Ю. Рубис // Интеллектуализация обработки информации: 9-я международная конференция. Черногория, г. Будва, 2012 г.: сб. докладов. – М.: Торус Пресс, 2012. – С. 406-409.
  5. Lafon, S. Diffusion maps and geometric harmonics // PhD thesis. – Yale University, Dept of Mathematics & Applied Mathematics. – 2004.
  6. Coifman, R. Geometries of sensor outputs, inference and information processing / R. Coifman, S. Lafon, M. Mag­gioni, Y. Keller, A.D. Szlam, F. Warner, S. Zucker // Storage and Retrieval for Image and Video Databases, edited by Intelligent Integrated Microsystems. – 2006. – Vol. 6232. – P. 623-209.
  7. Memoli, F. A spectral notion of Gromov–Wasserstein distance and related methods / F. Memoli // Applied and Computational Harmonic Analysis. – 2011. – Vol. 30(3). – P. 363-401. – ISSN 1063-5203.
  8. Goebel, B. An Approximation to the Distribution of Finite Sample Size Mutual Information Estimates / B. Goebel, Z. Dawy, J. Hagenauer, J.C. Mueller // Communications, 2005, ICC 2005 IEEE International Conference. – 2005. – Vol. 2. – P. 1102-1106.
  9. Ji, Y. Direct and Recursive Prediction of Time Series Using Mutual Information Selection / Y. Ji, J. Hao, N. Reyhani, A. Lendasse // Computational Intelligence and Bioinspired Systems, Lecture Notes in Computer Science. – 2005. – Vol. 3512. – P. 1010-1017.
  10. Falomkin, I.I. Algorithm of Adaptive Morphological Filtering of Images / I.I. Falomkin, Yu.P. Pyt’ev // Pattern Recognition and Image Analysis. – 2007. – Vol. 17(3). – P. 408-420. – ISSN 1555-6212.
  11. Vizilter, Yu.V. The Use of Projective Morphologies for Object Detection and Identification in Images / Yu.V. Vi­silter, S.Yu. Zheltov // Journal of Computer and Systems Sciences International –2009. – Vol. 48(2). – P. 282-294. – ISSN 1064-2307.
  12. Tenenbaum, J.B. A global geometric framework for nonlinear dimensionality reduction / J.B. Tenenbaum, V. de Silva, J.C. Langford // Science. – 2000. – Vol. 290. – P. 2319-2323.
  13. Roweis, S.T. Nonlinear dimensionality reduction by locally linear embedding / S.T. Roweis, L.K Saul // Science. – 2000. – Vol. 290 – P. 2323-2326.
  14. Scholkopf, B. Kernel principal component analysis / B. Scholkopf, A.J. Smola, K.-R. Muller // Advances in Kernel Methods: Support Vector Learning. – Cambridge, MA, USA: MIT Press, 1999. – 386 р.
  15. Belkin, M. Laplacian eigenmaps and spectral techniques for embedding and clustering / M. Belkin, P. Niyogi // Advances in Neural Information Processing Systems. – 2001. – Vol. 14. – P. 585-591 .
  16. Donoho, D. Hessian eigenmaps: locally linear embedding techniques for high dimensional data / D. Donoho, C. Gri­mes // Proceedings of National Academy of Sciences. – 2003. – Vol. 100(10). – P. 5591-5596.
  17. Gashler, M. Iterative Non-linear Dimensionality Reduction by Manifold Sculpting / M. Gashler, D. Ventura, T. Mar-tinez // Advances in Neural Information Processing Systems. – 2007. – Vol. 20. – P. 513-520.
  18. Coifman, R. Diffusion maps / R. Coifman, S. Lafon // Applied and Computational Harmonic Analysis. – 2006. – Vol. 21(1). – P. 5-30. – ISSN 1063-5203.
  19. Sun, J. A concise and provably informative multi-scale signature based on heat diffusion / J. Sun, M. Ovsjanikov, L Guibas // Computer Graphics Forum. – 2009. – Vol. 28(5). – P. 1383-1392. – ISSN 1467-8659.
  20. de Goes, F. A hierarchical segmentation of articulated bodies / F. de Goes, S. Goldenstein, L. Velho // Computer Graphics Forum. – 2008. – Vol. 27(5). – P. 1349-1356. – ISSN 1467-8659.
  21. Lieu, L. High-Dimensional Pattern Recognition using Low-Dimensional Embedding and Earth Mover’s Distance / L. Lieu, N. Saito [Электронный ресурс]. – 2009. – URL: https://www.math.ucdavis.edu/~saito/publications/saito_prldeemd.pdf (дата обращения 6.11.2014).
  22. Reuter, M. Laplace–Beltrami spectra as “Shape-DNA” of surfaces and solids / M. Reuter, F.-E. Wolter, N. Peinecke // Computer-Aided Design – 2006. – Vol. 38(4). – P. 342-366. – ISSN 0010-4485.
  23. Ahonen, T. Face recognition with local binary patterns / T. Ahonen, A. Hadid, M. Pietikainen // Computer Vision. ? ECCV 2004, Lecture Notes in Computer Science. – 2004. – Vol. 3021. – P. 469-481.
  24. NVIDIA CUDA Compute Unified Device Architecture [Электронный ресурс]. – URL: http://www.nvidia.ru/object/cuda-parallel-computing-ru.html (дата обращения 17.09.2014).

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: ko@smr.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20