Asymmetric apodization for the comma aberrated point spread function
Reddy A.N.K., Sagar D.K., Khonina S.N.


Samara National Research University, Samara, Russia,
Optics Research Group, Department of Physics, University College of Science, Osmania University, Hyderabad, Telangana, India,
Image Processing Systems Institute – Branch of the Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Samara, Russia

This paper deals with the study of light flux distributions in the point spread function formed by an optical system with a one-dimensional aperture under the influence of the coma aberration. The traditional design of an asymmetric optical filter improves the resolution of a diffraction-limited optical imaging system. In this approach we explore the control of monochromatic aberrations through pupil engineering with asymmetric apodization. This technique employs the amplitude and phase apodization for the mitigation of the effects of third-order aberrations on the diffracted image. On introducing the coma wave aberration effect, the central peak intensity in the field of diffraction is a function of the edge strips width and the amplitude apodization parameter of a one-dimensional pupil filter, whereas the magnitude of the reduction of optical side-lobes is a function of the degree of phase apodization at the periphery of the aperture. The analytically computed results are illustrated graphically in terms of point spread function curves under various considerations of the coma aberrations and a different degree of amplitude and phase apodization. Hence, for the optimum values of apodization, the axial resolution has been analyzed using well-defined quality criteria.

asymmetric apodization, amplitude masking, optical filters, resolution, monochromatic aberrations.

Reddy ANK, Sagar DK, Khonina SN. Asymmetric apodization for the comma aberrated point spread function. Computer Optics 2017; 41(4): 484-488. DOI: 10.18287/2412-6179-2017-41-4-484-488.


  1. Mills JP, Thompson BJ, eds. Selected papers on apodization: coherent optical systems. Bellingham, Washington: SPIE Optical Engineering Press; 1996. ISBN: 978-0819421500.
  2. Jacquinot P, Roizen-Dossier B. II Apodization. Progress in Optics 1964; 3: 29-186. DOI: 10.1016/S0079-6638(08)70570-5.
  3. Barakat R. Application of apodization to increase Two-point resolution by Sparrow criterion under incoherent illumination. JOSA 1962; 52(3): 276-283. DOI: 10.1364/JOSA.52.000276.
  4. Barakat R. Solution of the Lunenberg Apodization problems. JOSA 1962; 52(3): 264-275. DOI: 10.1364/JOSA.52.000264.
  5. Dowski ER, Cathey WT. Extended depth of field through wavefront coding. Appl Opt 1995; 34(11): 1859-1866. DOI: 10.1364/AO.34.001859.
  6. Pan C, Chen J, Zhang R, Zhuang S. The extension ratio of depth of field by wavefront coding method. Opt Express 2008; 16(17): 13364-13371. DOI: 10.1364/OE.16.013364.
  7. Khonina SN, Ustinov AV. Generalized apodization of an incoherent imaging system aimed for extending the depth of focus. Pattern Recognition and Image Analysis 2015; 25(4): 626-631. DOI: 10.1134/S1054661815040100.
  8. Cheng L, Siu GG. Asymmetric apodization. Measurement Science and Technology 1991; 2(3): 198-202. DOI: 10.1088/0957-0233/2/3/002.
  9. Siu GG, Cheng L, Chiu DS. Improved side-lobe suppression in asymmetric apodization. J Phys D: Appl Phys 1994; 27(3): 459-463. DOI: 10.1088/0022-3727/27/3/005.
  10. Reddy ANK, Sagar DK. Half-Width at half-maximum, full-Width at half-maximum analysis for resolution of asymmetrically apodised optical systems with slit apertures. Pramana 2015; 84(1): 117-126. DOI: 10.1007/s12043-014-0828-0.
  11. Siu GG, Cheng M, Cheng L. Asymmetric apodization applied to linear arrays. J Phys D: Appl Phys 1997; 30(5): 787-792. DOI: 10.1088/0022-3727/30/5/011.
  12. Zervas MN, Tarvener D. Asymmetrically apodised linear chirped fiber gratings for efficient pulse compression. Fiber and Integrated Optics 2000; 19(4): 355-365. DOI: 10.1080/014680300300001707.
  13. Reddy ANK, Sagar DK. Spherical aberration of Point spread function with Asymmetric pupil mask. Advances in optical technologies 2016; 2016: 1608342. DOI: 10.1155/2016/1608342.
  14. Khonina SN, Kazanskiy NL, Volotovsky SG. Vortex phase transmission function as a factor to reduce the focal spot of high-aperture focusing system. J Mod Opt 2011; 58(9): 748-760. DOI: 10.1080/09500340.2011.568710.
  15. Khonina SN, Kazanskiy NL, Volotovsky SG. Influence of vortex transmission phase function on intensity distribution in the focal area of high-aperture focusing system. Optical Memory and Neural Networks (Information Optics) 2011; 20(1): 23-42. DOI: 10.3103/S1060992X11010024.
  16. Goud MK, Komala R, Reddy ANK, Goud SL. Point spread function of asymmetrically apodized optical systems with complex pupil filters. Acta Physica Polonica A 2012; 122(1): 90-95.
  17. Reddy ANK, Sagar DK. Point spread function of optical systems apodised by a semicircular array of 2D aperture functions with asymmetric apodization. J Inf Commun Converg Eng 2014; 12(2): 83-88. DOI: 10.6109/jic­ce.2014.12.2.083.
  18. Reddy ANK, Sagar DK. Two-point resolution of asymmetrically apodized optical systems. Optica Pura y Aplicada 2013; 46(3): 215-222. DOI: 10.7149/OPA.46.3.215.
  19. Kowalczyk M, Zapata-Rodriguez CJ, Martinez-Corral M. Asymmetric apodization in confocal scanning systems. Appl Opt 1998; 37(35): 8206-8214.
  20. Yang W, Kotinski AB. One-sided achromatic phase apodization for imaging of extra solar planets. The Astrophysical Journal 2004; 605(2): 892-901. DOI: 10.1086/382586.
  21. Khonina SN, Pelevina EA. Reduction of the focal spot size in high-aperture focusing systems at inserting of aberrations. Optical Memory and Neural Networks (Information Optics) 2011; 20(3): 155-167. DOI: 10.3103/S1060992X11030039.
  22. Khonina SN, Ustinov AV, Pelevina EA. Analysis of wave aberration in?uence on reducing the focal spot size in a high-aperture focusing system. J Opt 2011; 13(9): 095702. DOI: 10.1088/2040-8978/13/9/095702.
  23. Falconi O. Limits to which double lines, double stars, and disks can be resolved and measured. JOSA 1967; 57(8): 987-993. DOI: 10.1364/JOSA.57.000987.
  24. Hopkins HH, Zalar B. Aberration tolerances based on Line spread function. J Mod Opt 1987; 34(3): 371-406. DOI: 10.1080/09500348714550391.
  25. Gupta AK, Singh K. Partially coherent far-field diffraction in the presence of primary astigmatism. Can J Phys 1978; 56(12): 1539-1544. DOI: 10.1139/p78-206.
  26. Descloux A, Amitonova LV, Pepijn WHP. Aberrations of Point spread function of Multimode fiber due to partial mode excitation. Optics Express 2016; 24(16): 18501-18512. DOI: 10.1364/OE.24.018501.
  27. Watson AB. Computing human optical Point spread functions. Journal of Vision 2015; 15(2): 26. DOI: 10.1167/15.2.26.
  28. Khorin PA, Khonina SN, Karsakov AV, Branchevskiy SL. Analysis of corneal aberration of the human eye. Computer Optics 2016; 40(6): 810-817. DOI: 10.18287/0134-2452-2016-40-6-810-817.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail:; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20