Simulation of a long-haul fiber optic link with a two-mode optical fiber
Burdin V.A., Bourdine A.V.

Povolzhskiy State University of Telecommunications and Informatics, Samara, Russia

Modern telecommunication networks approach the capacity crunch, which is associated with the so-called nonlinear Shannon limit. So, the passage to fiber optic links with few-mode optical fibers is considered as an alternative solution of the described problem concerned with high nonlinearity of conventional commercial single-mode optical fibers. Presently, various designs of few-mode optical fibers have been known, with the recently published works presenting experimental results demonstrating their potentialities for long-haul fiber optic links. A lot of models of long-haul fiber optic links with few-mode optical fibers have been developed based on which features of a few-mode optical fiber transport network were numerically simulated. This work presents the results of simulation of a 6000-km long-haul fiber optic link with a two-mode optical fiber and 100-km-per-span Erbium doped fiber optic amplifiers system under 100 Gbps DP-DQPSK data transmission. We studied the use of particular linearly polarized modes and optical vortices for signal transmission. The computation results were compared with the simulation of the same fiber optic link with a single-mode optical fiber under the identical conditions.

system of coupled nonlinear Schrödinger equations; few-mode optical fiber; fiber optic link; Split Step Fourier Method; Gaussian approximation; linearly polarized modes; optical vortices.

Burdin VA, Bourdine AV. Simulation of a long-haul fiber optic link with a two-mode optical fiber. Computer Optics 2017; 41(4): 489-493. DOI: 10.18287/2412-6179-2017-41-4-489-493.


  1. Essiambre R-J, Tkach RW. Capacity trends and limits of optical communication networks. Proc IEEE 2012; 100(5): 1035-1055. DOI: 10.1109/JLT.2009.2039464.
  2. Ellis AD. The nonlinear Shannon limit and the need for new fibres. Proc SPIE 2012; 8434: 84340H. DOI: 10.1117/12.928093.
  3. Richardson DJ, Fini JM, Nelson LE. Space-division multiplexing in optical fibres. Nature Photonics 2013; 7: 354-362. DOI: 10.1038/nphoton.2013.94.
  4. Andreev VA, Burdin VA, Bourdine AV. Few-mode transmission regime in optical fibers: application on high-speed fiber optic lines [In Russian]. Electrosvyaz 2013; 12: 27-30.
  5. Ferreira F, Jansen S, Monteiro P, Silva H. Nonlinear semi-analytical model for simulation of few-mode fiber transmission. IEEE Photonics Technology Letters 2012; 24(4): 240-242. DOI: 10.1109/LPT.2011.2177250.
  6. Li A, Chen X, Amin AA, Ye J, Shieh W. Space-division multiplexed high-speed superchannel transmission over few-mode fiber. Journal of Lightwave Technology 2012; 30(24): 3953-3964. DOI: 10.1109/JLT.2012.2206797.
  7. Grüner-Nielsen L, Sun Y, Nicholson JW, Jakobsen D, Jespersen KG, Lingle R, Pálsdóttir B. Few mode transmission fiber with low DGD, low mode coupling, and low loss. Journal of Lightwave Technology 2012; 30(23): 3693-3698. DOI: 10.1109/JLT.2012.2227243.
  8. Wang J. Advances in communications using optical vortices. Photonics Research 2016; 4(5): B14-B28. DOI: 10.1364/PRJ.4.000B14.
  9. Yaman F, Bai N, Zhu B, Wang T, Li G. Long distance transmission in few-mode fibers. Opt Express 2010; 18(12): 13250-13257. DOI: 10.1364/OE.18.013250.
  10. Yaman F, Bai N, Huang YK, Huang MF, Zhu B, Wang T, Li G. 10 x 112Gb/s PDM-QPSK transmission over 5032 km in few-mode fibers. Opt Express 2010; 18(20): 21342-21349. DOI: 10.1364/OE.18.021342.
  11. Chen X, Li A, Ye J, Amin AA, Shieh W. Reception of mode-division multiplexed superchannel via few-mode compatible optical add/drop multiplexer. Opt Express 2012; 20(13): 14302-14307. DOI: 10.1364/OE.20.014302.
  12. Koebele C, Salsi M, Sperti D, Tran P, Brindel P, Mardoyan H, Bigo S, Boutin A, Verluise F, Sillard P, Astruc M, Provost L, Cerou F, Charlet G. Two mode transmission at 2x100Gb/s, over 40km-long prototype few-mode fiber, using LCOS-based programmable mode multiplexer and demultiplexer. Opt Express 2011; 19(17): 16593-16600. DOI: 10.1364/OE.19.016593.
  13. Volyar AV, Fadeeva TA. Vortex nature of optical fiber modes: I. Structure of the natural modes. Techn Phys Lett 1996; 22(4): 330-332.
  14. Khonina SN, Skidanov RV, Kotlyar VV, Jefimovs K, Turunen J. Phase diffractive filter to analyze an output step-index fiber beam. Optical Memory and Neural Networks 2003; 12(4): 317-324.
  15. Black RJ, Gagnon L. Optical waveguide modes. New York: The McGraw-Hill Companies; 2010.
  16. Khonina SN, Kazanskiy NL, Soifer VA. Optical vortices in a fiber: mode division multiplexing and multimode self-imaging. In book: Yasin M, Harun SW, Arof H, eds. Recent progress in optical fiber research. Chap 15. Croatia: INTECH publisher; 2012. ISBN: 978-953-307-823-6.
  17. Lyubopytov VS, Tlyavlin AZ, Sultanov AK, Bagmanov VK, Khonina SN, Karpeev SV, Kazanskiy NL. Mathematical model of completely optical system for detection of mode propagation parameters in an optical fiber with few-mode operation for adaptive compensation of mode coupling, Computer Optics 2013; 37(3): 352-359.
  18. Wang J, Yang J-Y, Fazal IM, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M, Willner AE. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photonics 2012; 6: 488-496. DOI: 10.1038/nphoton.2012.138.
  19. Willner AE, Huang H, Yan Y, Ren Y, Ahmed N, Xie G, Bao C, Li L, Cao Y, Zhao Z, Wang J, Lavery MPJ, Tur M, Ramachandran S, Molisch AF, Ashrafi N, Ashrafi S. Optical communications using orbital angular momentum beams. Advances in Optics and Photonics 2015; 7(1): 66-106. DOI:10.1364/AOP.7.000066.
  20. Agrawal GP. Nonlinear fiber optics. 3rd ed. New York: Academic Press; 2001. ISBN: 978-0-12-045143-3.
  21. Agrawal GP. Applications of nonlinear fiber optics. 2nd ed. New York: Academic Press; 2008. ISBN: 978-0-12-374302-2.
  22. Sisakyan IN, Shvarcburg AV. Nonlinear dynamics of picosecond pulses in fiber-optic waveguides (review). Soviet Journal of Quantum Electronics 1984; 14(9): 1146-1157. DOI: 10.1070/QE1984v014n09ABEH006100.
  23. Shirokov SM. Approximate parametrical models of dynamics of self-influence of impulses in nonlinear optical environments with mode dispersion [In Russian]. Computer Optics 1995; 14-15(2): 117-124.
  24. Mumtaz S, Essiambre R-J, Agrawal GP. Nonlinear propagation in multimode and Multicore fibers: generalization of the Manakov equations. Journal of Lightwave Technology 2013; 31(3): 398-406. DOI: 10.1109/JLT.2012.2231401.
  25. Burdin VA, Bourdine AV. Modeling and simulation of a few-mode long-haul fiber optic transmission link. Proc SPIE 2015; 9533: 953307. DOI: 10.1117/12.2181127.
  26. Zhang Q, Karri S, Khaliq M, Xing L, Hayee MI. Global simulation accuracy control in the split-step fourier simulation of vector optical fiber communication. Journal of Communications 2015; 10(1): 1-8. DOI: 10.12720/jcm.10.1.1-8.
  27. Binh LN. Optical fiber communications systems. Theory and practice with MATLAB and Simulink models. Boca Raton, FL: CRC Press/Taylor&Francis; 2010. ISBN: 978-1439806203.
  28. Gloge D. Weakly guided fibers. Appl Opt 1971; 10(10): 2252-2258. DOI: 10.1364/AO.10.002252.
  29. Snyder AW, Love JD. Optical waveguide theory. London, New York: Chapman and Hall; 1983. ISBN: 978-0-412-24250-2.
  30. Bourdine AV, Burdin VA. Solution for arbitrary order guided mode propagating over optical circle fiber based on Gaussian approximation. Proc SPIE 2012; 8410: 841009. DOI: 10.1117/12.923235.
  31. Grin LE, Korolenko PV, Fedotov NN. Laser beams with a helical wavefront structure. Optics and spectroscopy 1992; 73(5): 604-605.
  32. Shokin YI, Skidin AS, Fedoruk MP. Aspects of information transmission and processing in ultra high-rate fiber optic communication lines [In Russian]. Informatsionno-upravliaiushchie sistemy 2013; 2: 54-59.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail:; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20