Conditions of a single-mode rib channel waveguide based on dielectric TiO2/SiO2
Butt M.A., Kozlova E.S., Khonina S.N.

Samara National Research University, Samara, Russia
Image Processing Systems Institute оf RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Samara, Russia

Abstract:
In this paper, we propose conditions for the design of a single-mode rib channel waveguide based on dielectric materials such as titanium dioxide (TiO2) and silicon dioxide (SiO2) for the 0.633-µm visible light. We also design Y-splitter structures, which show high-degree optical confinement and low bend losses at various radii of curvatures. Small radii of curvatures are extremely desirable in integrated photonics as they permit decreasing the dimensions but can also potentially reduce power consumption in the active devices.

Keywords:
single mode, rib channel waveguide, titanium dioxide, silicon dioxide, beam propagation method.

Citation:
Butt MA, Kozlova ES, Khonina SN. Conditions of a single-mode rib channel waveguide based on dielectric TiO2/SiO2. Computer Optics 2016; 41(4): 494-498. DOI: 10.18287/2412-6179-2016-40-4-494-498.

References:

  1. Senior JM. Optical fiber communications: Principles and practice. Pearson education Ltd.; 2009. ISBN: 978-0-13-032681-2.
  2. Tong XC. Advanced materials for integrated optical waveguides. Switzerland: Springer International Publishing; 2014. ISBN 978-3-319-01549-1.
  3. Butt MA, Pujol MC, Sole R, Rodenas A, Lifante G, Wilkinson JS, Aguilo M, Diaz F. Channel waveguides and mach-zehnder structures on RbTiOPO4 by Cs+ ion exchange. Opt Mat Express 2015; 5(5): 1183-1194. DOI: 10.1364/OME.5.001183.
  4. Butt MA, Nguyen HD, Rodenas A, Romero C, Moreno P, Vazuez de Aldana JR, Aguilo M, Sole RM, Pujol MC, Diaz F. Low-repitition rate femtosecond laser writing of optical waveguides in KTP crystals: analysis of anisotropic refractive index changes. Opt Express 2015; 23(12): 15343-15355. DOI: 10.1364/OE.23.015343.
  5. Butt MA, Sole R, Pujol MC, Rodenas A, Lifante G,  Choudhary A, Murugan GS, Shepherd DP, Wilkinson JS, Aguilo M, Diaz F. Fabrication of Y-splitters and Mach-Zehnder structures on (Yb, Nb):RbTiOPO4/RbTiOPO4 Epitaxial layers by reactive ion etching. Journal of Lightwave Technology 2015; 33(9): 1863-1871.
  6. Kazanskiy NL, Serafimovich PG, Khonina SN. Optical nanoresonator in the ridge of photonic crystal waveguides crossing [In Russian]. Computer Optics 2011; 35(4): 426-431.
  7. Strilets TS, Kotlyar VV, Nalimov AG. Simulation of waveguide modes in multilayer structures [In Russian]. Computer Optics 2010; 34(4): 487-493.
  8. Moiseeva NM. The calculation of eigenvalues modes of the planar anistropic waveguides for various angles the optical axis. Computer Optics 2013; 37(1): 13-18.
  9. Adams MJ. An introduction to Optical waveguides. New York: John Wiley & Sons; 1981. ISBN: 978-0-471-27969-3.
  10. Robson PN, Kendall PC, eds. Rib waveguide theory by the spectral index method. Research Studies Press Ltd.; 1990. ISBN: 978-0-863-80110-5.
  11. Soref RA, Schmidtchen J, Petermann K. Large single mode rib waveguides in GeSi-Si and Si-on-SiO2. IEEE J Quantum Electron 1991; 27: 1971-1974. DOI: 10.1109/3.83406.
  12. Wang S. Principles of distributed feedback and distributed Bragg-reflector lasers, IEEE J Quantum Electron 1974, 10(4): 413-427. DOI: 10.1109/JQE.1974.1068152.
  13. Pogossian SP, Vescan L, Vonsovici A. The single mode condition for semiconductor Rib waveguides with large cross section. J Lightwave Technol 1998; 16(10), 1851-1853.
  14. Yeatman EM, Pita K, Ahmad MM. Strip-loaded high confinement waveguides for photonic applications. Journal of Sol-Gel Science and Technology 1998; 13(1-3): 517-521.
  15. Butt MA, Pujol MC, Sole R, Rodenas A, Lifante G, Aguilo M, Diaz F, Khonina SN, Skidanov RV, Verma P. Fabrication of optical waveguides in RbTiOPO4 single crystals by using different techniques. Proc SPIE 2016; 9807: 98070C. DOI: 10.1117/12.2231368.
  16. Boudrioua A. Photonic waveguides: Theory and applications. Hoboken, NJ: John Wliey & Sons, Inc.; 2009. ISBN:978-1-84821-027-1.
  17. Lifante G. Integrated Photonics fundamentals. Chichester: John Wiley & Sons Ltd.; 2003. ISBN: 0-470-84868-5.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: ko@smr.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20