Nanophotonic structure formation by dry e-beam etching of the resist: resolution limitation origins
Rogozhin A., Bruk M., Zhikharev E., Sidorov F.

Institute of Physics and Technology of RAS, Moscow, Russia,
Moscow Institute of Physics and Technology, Moscow, Russia

A wide range of structures for nanophotonics and optoelectronics can be formed by dry e-beam etching of the resist (DEBER). High resist sensitivity due to chain depolymerization reaction provides efficient etching with high throughput of the method. The structures obtained by the DEBER in this research are well-rounded diffraction gratings, binary gratings and staircase profiles. The major disadvantage of DEBER is poor lateral resolution, which may be caused by different physical mechanisms. Four groups of possible mechanisms leading to the resolution limitation are determined and the influence of some mechanisms is estimated.

DEBER, e-beam etching, nanophotonics, diffractive optical elements, diffractive optics, three-dimensional lithography, three-dimensional fabrication, microlithography, optical design and fabrication.

Rogozhin A, Bruk M, Zhikharev E, Sidorov F. Nanophotonic structure formation by dry e-beam etching of the resist: resolution limitation origins. Computer Optics 2016; 41(4): 499-503. DOI: 10.18287/2412-6179-2017-41-4-499-503.


  1. Bruk MA, Zhikharev EN, Kal'nov VA, Spirin AV, Strel'tsov DR. Method of forming masking image in positive electron resists [In Russian]. Pat RF of Invent N RU 2478226 C1 of March 27, 2013; Russian Bull of Inventions N9, 2013.
  2. Bruk MA, Zhikharev EN, Streltsov DR, Kalnov VA, Spirin AV. The new dry method of mask (relief) formation by direct electron-beam etching of resist. Microelectronic Eng 2013; 112(C): 1-4. DOI: 10.1016/j.mee.2013.06.003.
  3. Fragalà ME, Compagnini G, Torrisi L, Puglisi O. Ion beam assisted unzipping of PMMA. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 1998; 141(1-4): 169-173. DOI: 10.1016/S0168-583X(98)00087-1.
  4. Mita I, Obata K, Horie K. Photoinitiated thermal degradation of polymers II. Poly(methyl methacrylate). Polymer Journal 1990; 22: 397-410. DOI: 10.1295/polymj.22.397.
  5. Kemme S. Microoptics and nanooptics fabrication. Boca Raton, FL: Taylor & Francis Group; 2010. ISBN: 978-0-8493-3676-8.
  6. Andrews DL, ed. Photonics, Volume 2: Nanophotonic structures and materials. Hoboken, New Jersey: John Wiley & Sons; 2015. ISBN: 978-1-118-22551-6.
  7. Broers AN, Hoole ACF, Ryan JM. Electron beam lithography – Resolution limits. Microelectronic Eng 1996; 32(1-4): 131-142. DOI: 10.1016/0167-9317(95)00368-1.
  8. Vieu C, Carcenac G, Pepin A, Chen Y, Mejias M, Lebib A, Manin-Ferlazzo L, Couraud L, Launois H. Electron beam lithography: Resolution limits and applications. Applied Surface Science 2000; 164(1): 111-117. DOI: 10.1016/S0169-4332(00)00352-4.
  9. Manfrinato VR, Wen J, Zhang L. Determining the resolution limits of electron-beam lithography: Direct measurement of the point-spread function. Nano Lett 2014; 14(8): 4406-4412. DOI: 10.1021/nl5013773.
  10. Bruk MA, Kondrat'eva MV, Baranov AA, Pebalk KV, Sergeev AM, Kozlova NV. Radiation-induced depolymerization of PMMA adsorbed on silochrome. Polymer Science Series A 1999; 41(2): 159-164.
  11. Bruk MA, Zhikharev EN, Rogozhin AE, Streltsov DR, Kalnov VA, Averkin SN, Spirin AV. Formation of micro- and nanostructures with well-rounded profile by new e-beam lithography principle. Microelectronic Eng 2016; 155: 92-96; DOI: 10.1016/j.mee.2016.03.017.
  12. Rogozhin AE, Bruk MA, Zhikharev EN, Streltsov DR, Spirin AV, Hramchihina J. Dry e-beam etching of resist for optics. Journal of Physics: Conference Series 2016; 741(1): 012115. DOI: 10.1088/1742-6596/741/1/012115.
  13. Han G, Khan M, Fang Y, Cerrina F. Comprehensive model of electron energy deposition. J Vac Sci Technol B 2002; 20(6): 2666. DOI: 10.1116/1.1526633.
  14. Hovington P, Drouin D, Gauvin R. CASINO: A new monte carlo code in C language for electron beam interaction – part I: Description of the program. The Journal of Scanning Microscopies – Scanning 1997; 19(1): 1-14. DOI: 10.1002/sca.4950190101.
  15. Dapor M. Comparison between Energy Straggling Strategy and continuous slowing down approximation in Monte Carlo simulation of secondary electron emission of insulating materials. Progress in Nuclear Science and Technology 2011; 2: 762-768. DOI: 10.15669/pnst.2.762.
  16. Lee KW, Yoon SM, Lee SC, Lee W, Kim I-M, Lee CE, Kim DH. Secondary electron generation in electron-beam-irradiated solids: Resolution limits to nanolithography. Journal of the Korean Physical Society 2009; 55(4): 1720-1723. DOI: 10.3938/jkps.55.1720.
  17. Henke BL, Gullikson EM, Davis JC. X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92. Atomic Data and Nuclear Data Tables 1993; 54(2): 181-342. DOI: 10.1006/adnd.1993.1013.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail:; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20