Features of changes in the nanostructure and colorizing of copper during scanning with a femtosecond laser beam
Liedl G., Pospichal R., Murzin S.P.

Vienna University of Technology, Vienna, Austria,
Samara National Research University, Samara, Russia

Abstract:
We have studied the nanostructuring and colorizing of the copper surface by scanning with a femtosecond laser beam with a near-Gaussian beam profile. The experimental studies were conducted using a femtosecond laser comprising a Ti:Sapphire oscillator and a multi-pass amplifier with the maximum pulse energy of 0.7 mJ, pulse frequency of 1 kHz, and pulse duration <30 fs. It is shown that the use of a short-pulsed femtosecond laser leads to the formation of wavelength scale periodic surface structures and eventually increases the brightness of the color of the copper surface. It is revealed that via reciprocally scanning the copper surface by multiple ultrashort laser pulses with a weakly asymmetric spatial energy density distribution and an energy density below the material ablation threshold, it is possible to create a combined nanostructure composed of low-spatial-frequency laser-induced periodic surface structures coated with nanoscale roughness. It is shown that relatively minor changes in the nanostructures obtained by scanning the copper surface by multiple ultrashort laser pulses can lead to a significant change in the color during surface colorizing.

Keywords:
femtosecond laser beam, copper colorizing, nanostructure, forward and reverse scanning, energy density.

Citation:
Liedl G, Pospichal R, Murzin SP. Features of changes in the nanostructure and colorizing of copper during scanning with a femtosecond laser beam. Computer Optics 2017; 41(4): 504-509. DOI: 10.18287/2412-6179-2017-41-4-504-509.

References:

  1. Beresna M, Kazansky PG. Polarization diffraction grating produced by femtosecond laser nanostructuring in glass. Opt Lett 2010; 35(10): 1662-1664. DOI: 10.1364/OL.35.001662.
  2. Ikeda Y, Kobayashi N, Kuzmenko PJ, Little SL, Yasui C, Kondo S, Mito H, Nakanishi K, Sarugaku Y. Fabrication and current optical performance of a large diamond-machined ZnSe immersion grating. Proc SPIE 2010; 7739: 77394G. DOI: 10.1117/12.856631.
  3. Desse J-M, Picart P, Olchewsky F. Quantitative phase imaging in flows with high resolution holographic diffraction grating. Opt Express 2015; 23(18): 23726-23737. DOI: 10.1364/OE.23.023726.
  4. Sugioka K. Progress in ultrafast laser processing and future prospects. Nanophotonics 2017; 6(2): 393-413. DOI: 10.1515/nanoph-2016-0004.
  5. Sugioka K, Cheng Y. Ultrafast lasers–reliable tools for advanced materials processing. Light: Science & Applications 2014; 3: e149. DOI: 10.1038/lsa.2014.30.
  6. Sugioka K, Cheng Y. Ultrafast laser processing: from micro- to nanoscale. Singapore: Pan Stanford Publishing; 2013. ISBN: 978-981-4267-33-5.
  7. Ahsan MS, Ahmed F, Kim YG, Lee MS, Jun MBG. Colorizing stainless steel surface by femtosecond laser induced micro/nano-structures. Appl Surf Sci 2011; 257(17): 7771-7777. DOI: 10.1016/j.apsusc.2011.04.027.
  8. Zhang C-Y, Yao J-W, Liu H-Y, Dai Q-F, Wu L-J, Lan S, Trofimov VA, Lysak TM. Colorizing silicon surface with regular nanohole arrays induced by femtosecond laser pulses. Opt Lett 2012; 37(6): 1106-1108. DOI: 10.1364/OL.37.001106.
  9. Vorobyev AY, Guo C. Direct femtosecond laser surface nano/microstructuring and its applications. Laser & Photonics Reviews 2013; 7(3): 385-407. DOI: 10.1002/lpor.201200017.
  10. Li B-J, Li H, Huang L-J, Ren N-F, Kong X. Femtosecond pulsed laser textured titanium surfaces with stable superhydrophilicity and superhydrophobicity. Appl Surf Sci 2016; 389: 585-593. DOI: 10.1016/j.apsusc.2016.07.137.
  11. Volkov AV, Kazanskiy NL, Moiseev OYu, Soifer VA. A method for the diffractive microrelief formation using the layered photoresist growth. Optics and Lasers in Engineering 1998; 29(4-5): 281-288. DOI: 10.1016/s0143-8166(97)00116-4.
  12. Kazanskiy NL, Uspleniev GV, Volkov AV. Fabricating and testing diffractive optical elements focusing into a ring and into a twin-spot. Proc SPIE 2000; 4316: 193-199. DOI: 10.1117/12.407678.
  13. Pavelyev VS, Borodin SA, Kazanskiy NL, Kostyuk GF, Volkov AV. Formation of diffractive microrelief on diamond film surface. Opt Laser Technol 2007; 39(6): 1234-1238. DOI: 10.1016/j.optlastec.2006.08.004.
  14. Kazanskiy NL, Kolpakov VA, Paranin VD, Polikarpov MS. The method of thin metal films adhesion increasing for the lowered dimensions structures. Proc. of SPIE 2008; 7025: 70250H. DOI: 10.1117/12.802364.
  15. Fomchenkov SA, Butt MA, Podlipnov VV, Poletaev SD, Skidanov RV, Kazanskiy NL. E-beam lithography exposure conditions for the fabrication of RGB filter based on metal/dielectric subwavelength grating. Journal of Physics: Conference Series 2016; 741(1): 012150. DOI: 10.1088/1742-6596/741/1/012150.
  16. Vorobyev AY, Guo C. Colorizing metals with femtosecond laser pulses. Appl Phys Lett 2008; 92(4): 041914. DOI: 10.1063/1.2834902.
  17. Dusser B, Sagan Z, Soder H, Faure N, Colombier JP, Jourlin M, Audouard E. Controlled nanostructrures formation by ultra fast laser pulses for color marking. Opt Express 2010; 18(3): 2913-2924. DOI: 10.1364/OE.18.002913.
  18. Yao J, Zhang C, Liu H, Dai Q, Wu L, Lan S, Gopal AV, Trofimov VA, Lysak TM. Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses. Appl Surf Sci 2012; 258(19): 7625-7632. DOI: 10.1016/j.apsusc.2012.04.105.
  19. Ou Z, Huang M, Zhao F. Colorizing pure copper surface by ultrafast laser-induced near-subwavelength ripples. Opt Express 2014; 22(14): 17254-17265. DOI: 10.1364/OE.22.017254.
  20. Li Y, Qian J, Bai F, Wang Z, Wang C, Fan W, Zhang Y, Zhao Q. Azimuthal angle- and scanning pitch-dependent colorization of metals by ultrashort laser pulses. Appl Phys A 2016; 122(4): 282. DOI: 10.1007/s00339-016-9846-8.
  21. Long J, Fan P, Zhong M, Zhang H, Xie Y, Lin C. Superhydrophobic and colorful copper surfaces fabricated by picosecond laser induced periodic nanostructures. Appl Surf Sci 2014; 311: 461-467. DOI: 10.1016/j.aps­usc.2014.05.090.
  22. Long J, Zhong M, Zhang H, Fan P. Superhydrophilicity to superhydrophobicity transition of picosecond laser microstructured aluminum in ambient air. Journal of Colloid and Interface Science 2015; 441: 1-9. DOI: 10.1016/j.jcis.2014.11.015.
  23. Long J, Fan P, Gong D, Jiang, D, Zhang H, Li L, Zhong M. Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: From lotus leaf to rose petal. ACS Appl Mater Interfaces 2015; 7(18): 9858-9865. DOI: DOI: 10.1021/acsami.5b01870.
  24. Ionin AA, Kudryashov SI, Makarov SV, Rudenko AA, Seleznev LV, Sinitsyn DV, Golosov EV, Kolobov YR, Ligachev AE. Beam spatial profile effect on femtosecond laser surface structuring of titanium in scanning regime. Appl Surf Sci 2013; 284: 634-637. DOI: 10.1016/j.aps­usc.2013.07.144.
  25. Ionin AA, Kudryashov SI, Makarov SV, Rudenko AA, Seleznev SV, Sinitsyn DV, Kaminskaya TP, Popov VV. Nonlinear evolution of aluminum surface relief under multiple femtosecond laser irradiation. JETP Lett 2015; 101(5): 350-357. DOI: 10.1134/S0021364015050100.
  26. Dar MH, Kuladeep R, Saikiran V, Rao ND. Femtosecond laser nanostructuring of titanium metal towards fabrication of low-reflective surfaces over broad wavelength range. Appl Surf Sci 2016; 371: 479-487. DOI: 10.1016/j.apsusc.2016.03.008.
  27. Yao J, Zhang C, Liu H, Dai Q, Wu L, Lan S, Gopal AV, Trofimov VA, Lysak TM. Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses. Appl Surf Sci 2012; 258(19): 7625-7632. DOI: 10.1016/j.apsusc.2012.04.105.
  28. Lin CY, Wu PH, Chang KP, Cheng CW, Huang SM. Fast fabrication of colorful nanostructures using imprinting with femtosecond laser structured molds. Journal of Laser Micro/Nanoengineering 2012; 7(1): 54-57. DOI: 10.2961/jlmn.2012.01.0010.
  29. Ionin AA, Kudryashov SI, Samokhin AA. Material surface ablation produced by ultrashort laser pulses. Physics-Uspekhi 2017; 60(2): 149-160. DOI: 10.3367/UFNe.2016.09.037974.
  30. Bonse J, Hohm S, Kirner SV, Rosenfeld A, Kruger J. Laser-induced periodic surface structures-a scientific evergreen. IEEE Journal of Selected Topics in Quantum Electronics 2017; 23(3): 9000615. DOI: 10.1109/JSTQE.2016.2614183.
  31. Volkov AV, Moiseev OYu, Poletaev SD, Chistyakov IV. Application of thin molybdenum films in contact masks for manufacturing the micro-relief of diffractive optical elements. Computer Optics 2014; 38(4): 757-762.
  32. Volkov AV, Kazanskiy NL, Moiseev OYu, Paranin VD, Poletayev SD, Chistyakov IV. Specific features of the laser irradiation of thin molybdenum films. Tech Phys 2016; 61(4): 579-583. DOI: 10.1134/S1063784216040241.
  33. Kazanskiy NL, Kharitonov SI. Transmission of the space-limited broadband symmetrical radial pulses focused through a thin film. Computer Optics 2012; 36(1): 4-13.
  34. Kazanskiy NL, Murzin SP, Osetrov YeL, Tregub VI. Synthesis of nanoporous structures in metallic materials under laser action. Opt Laser Eng 2011; 49(11): 1264-1267. DOI: 10.1016/j.optlaseng.2011.07.001.
  35. Veiko VP, Sinev DA, Shakhno EA, Poleshchuk AG, Sametov AR, Sedukhin AG. Researching the features of multibeam laser thermochemical recording of diffractive microstructures. Computer Optics 2012; 36(4): 562-571.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: ko@smr.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20