Mapping and evaluating urban density patterns in Moscow, Russia
Choudhary K., Boori M.S., Kupriyanov A.V.

Samara National Research University, Samara, Russia,
American Sentinel University, Denver, Colorado, USA,
Image Processing Systems Institute – Branch of the Federal Scientific Research Centre“Crystallography and Photonics” of Russian Academy of Sciences, Samara, Russia,
Bonn University, Bonn, Germany

Abstract:
The defense of the notion of ‘compact city’ as a strategy to reduce urban sprawl to support greater utilization of existing infrastructure and services in more compact areas and to improve the connectivity of employment hubs is actively discussed in urban research. Using the urban residential density as a surrogate measure for urban compactness, this paper empirically examines a cadaster database that contains details of every property with a view of capturing changes in urban residential density patterns across Moscow using geospatial techniques. The policy of densification in chase of a more compact city has produced mixed results. Findings of this study signal that the urban densities across the buffer zones around Moscow city are significantly different. The Landsat images from 1995, 2005 and 2016 are classified based on the maximum likelihood to expand the land use/cover maps and identify the land cover. Then, the area coverage for all the land use/cover types at different points in time is combined with the distance from the city center. After that, urbanization densities from the city center toward the outskirts for every 1-km distance from 1 to 60 km are calculated. The city density on the distance of 1 to 35 km is found to be very high in the years 1995 to 2016. As usual, the population, traffic conditions, industrialization and government policy are the major factors that influenced the urban expansion.

Keywords:
density, compact city, land use/cover, buffer zones.

Citation:
Choudhary K, Boori MS, Kupriyanov A. Mapping and evaluating urban density patterns in Moscow, Russia. Computer Optics 2017; 41(4): 528-534. DOI: 10.18287/2412-6179-2017-41-4-528-534.

References:

  1. Anselin L. Spatial econometrics: Methods and models. Dordrecht: Kluwer Academic Publishers; 1988. ISBN: 978-90-481-8311-1.
  2. Beed CS. Melbourne’s development and planning. Melbourne: Clewara Press; 1981. ISBN: 978-0-959416619.
  3. Choudhary K, Boori MS, Kupriyanov A. Spatial modelling for natural and environmental vulnerability through remote sensing and GIS in Astrakhan, Russia. The Egyptian Journal of Remote Sensing and Space Science 2017 [In Press]. DOI: 10.1016/j.ejrs.2017.05.003.
  4. Burton E. The compact city: Just or just compact? A preliminary analysis. Urban Studies 2000, 37(11), 1969-2001. DOI: 10.1080/00420980050162184.
  5. Al-Awadhi T. Monitoring and modeling urban expansion using GIS & RS: Case study from Muscat, Oman. In: Proceedings of Urban Remote Sensing Joint Event 2007; 1-5. DOI: 10.1109/URS.2007.371790.
  6. Alphan H. Land-use change and urbanization in Adana, Turkey. Land Degradation & Development 2003; 14(6): 575-586. DOI: 10.1002/ldr.581.
  7. Anderson JR, Hardey E, Roach J, Witmer RE. A land use and land cover classification system for use with remote sensor data. U.S. Geological Survey Professional Paper 1976; 964: 1-28.
  8. Barnsley MJ, Barr SJ. Inferring urban land use from satellite sensor images using Kernel-based spatial reclassification. Photogrammetric Engineering & Remote Sensing 1996; 62(8): 949-958.
  9. Choudhary K, Boori MS, Kupriyanov A. Landscape analysis through remote sensing and GIS techniques: A case study of Astrakhan, Russia. Proc SPIE 2017; 10225: 102251U. DOI: 10.1117/12.2266245.
  10. Lu Q, Weng D. Urban classification using full spectral information of Landsat ETM+ imagery in Marion County, Indiana. Photogrammetric Engineering & Remote Sensing 2005; 71(11): 1275-1284. DOI: 10.14358/PERS.71.11.1275.
  11. Bertaud A, Malpezzi S. The spatial distribution of population in 35 world cities: The role of markets planning and topography. Madison, WI: Centre of Urban Land Economics Research; 1999.
  12. Saboori B, Sulaiman J, Mohd S. Economic growth and CO2 emission in Malaysia: A cointegration analysis of the environmental Kuznets curve. Energy Policy 2012; 51: 184-191. DOI: 10.1016/j.enpol.2012.08.065.
  13. Salari HE, Hengsbach T, Henke C, Kopec J, Kozinski M, Sumpelmann P. Detection and analysis of land use changes and growth of Hanoi using remote sensing methods and Landsat satellite images. Dortmund: Technische University; 2013.
  14. Stefanov WL, Ramsey MS, Christensen PR. Monitoring urban land cover change: An expert system approach to land cover classification of semiarid to arid urban centers. Remote Sensing of Environment 2001; 77: 173-185. DOI: 10.1016/S0034-4257(01)00204-8.
  15. Thinh NX. Contemporary spatial analysis and simulation of the settlement development of the Dresden city region. Proceedings of 17th International Conference Informatics for Environmental Protection, Cottbus, Part 1: Concepts and Methods 2003; 253-261.
  16. Thinh NX, Arlt G, Heber B, Hennersdorf J, Lehmann I (2013) Pin-pointing sustainable urban land-use structures with the aid of GIS and cluster analysis. 15th International Symposium Informatics for Environmental Protection, Zürich 2001: 559-567.
  17. Weng QH. Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modelling. J Environ Manage 2002; 64(3): 273-284. DOI: 10.1006/jema.2001.0509.
  18. Boori MS, Choudhary K, Kupriyanov A, Sugimoto A, Eyer M. Natural and Environmemtal vulnerability analysis through remote sensing and GIS techniques: A case study of Indigirka River basin, Eastern Siberia, Russia. Proc SPIE 2016; 10005: 100050U. DOI: 10.1117/12.2240917.
  19. Wilson EH, Hurd JD, Civco DL, Prisloe MP, Arnold C. Development of a geospatial model to quantify, describe and map urban growth. Remote Sens Environ 2003; 86(3): 275-285. DOI: 10.1016/S0034-4257(03)00074-9.
  20. Wu KY, Ye ZY, Qi, ZF, Zhang H. Impacts of land use/land cover change and socioeconomic development on regional ecosystem services: the case of fast-growing Hangzhou metropolitan area, China. Cities 2013; 31: 276-284. DOI: 10.1016/j.cities.2012.08.003.
  21. Xiao J, Shen Y, Ge J, Tateishi R, Tand C, Liang Y, Huang Z. Evaluation urban expansion and land use change in Shijiazhuang, China, by using GIS and remote sensing. Landsc Urban Plan 2006; 75(1-2): 69-80. DOI: 10.1016/j.landurbplan.2004.12.005.
  22. Yagoub M. Monitoring of urban growth of a desert city through remote sensing: Al-Ain, UAE, between 1976 and 2000. Int J Remote Sens 2004; 25(6): 1063-1076. DOI: 10.1080/0143116031000156792.
  23. Choudhary K, Boori MS, Kupriyanov A, Kovelskiy V. Analysis of urban spatio-temporal land use/cover change and expansion with their driving force through remote sensing and GIS in Samara city, Russia. DOI: 10.1201/b19934-70. In Book: Hong SH, Seo J, Moon K, eds. Advanced materials, mechanical and structural engineering. London, UK: Taylor & Francis Group; 2016: 355-358. ISBN: 978-1-138-02908-8.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: ko@smr.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20