Optimal calibration of a prism-based videoendoscopic system for precise 3D measurements
Gorevoy A.V., Machikhin A.S.

Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences, Moscow, Russia,
Bauman Moscow State Technical University, Moscow, Russia,
Moscow Power Engineering University, Moscow, Russia

Abstract:
Modern videoendoscopes are capable of performing precise three-dimensional (3D) measurements of hard-to-reach elements. An attachable prism-based stereo adapter allows one to register images from two different viewpoints using a single sensor and apply stereoscopic methods. The key condition for achieving high measurement accuracy is the optimal choice of a mathematical model for calibration and 3D reconstruction procedures. In this paper, the conventional pinhole camera models with polynomial distortion approximation were analyzed and compared to the ray tracing model based on the vector form of Snell’s law. We, first, conducted a series of experiments using an industrial videoendoscope and utilized the criteria based on the measurement error of a segment length to evaluate the mathematical models considered. The experimental results confirmed a theoretical conclusion that the ray tracing model outperforms the pinhole models in a wide range of working distances. The results may be useful for the development of new stereoscopic measurement tools and algorithms for remote visual inspection in industrial and medical applications.

Keywords:
remote visual inspection, 3D spatial measurements, camera calibration, distortion model, prism distortion.

Citation:
Gorevoy AV, Machikhin AS. Optimal calibration of a prism-based videoendoscopic system for precise 3D measurements. Computer Optics 2017; 41(4): 535-544. DOI: 10.18287/2412-6179-2017-41-4-535-544.

References:

  1. Mix PE. Introduction to nondestructive testing: A training guide. 2nd ed. New York: John Wiley & Sons; 2005. ISBN: 978-0-471-42029-3.
  2. Zhu Y-K, Tian G-Y, Lu R-S, Zhang H. A review of optical NDT technologies. Sensors (Basel) 2011; 11(8): 7773-7798. DOI: 10.3390/s110807773.
  3. Olympus Corp. Demonstration of stereo measurement. Source: áhttp://www.olympus-ims.com/en/rvi-products/ip­lex-fx/demo-stereo-measurement/ñ.
  4. Hartley RI, Zisserman A. Multiple view geometry in computer vision. 2nd ed. Cambridge: Cambridge University Press; 2004. ISBN: 978-0-521-54051-3.
  5. Kannala J, Brandt SS. A generic camera model and calibration method for conventional, wide-angle, and fish-eye lenses. IEEE Trans Pattern Analysis and Machine Intelligence 2006; 28(8): 1335-1340. DOI: 10.1109/TPA­MI.2006.153.
  6. Zhang S, ed. Handbook of 3D machine vision: Optical metrology and imaging. Boca Raton, Fl: CRC Press; 2016. ISBN 978-1-138-19957-6.
  7. Lee D, Kweon I. A novel stereo camera system by a biprism. IEEE Transactions on Robotics and Automation 2000; 16(5): 528-541. DOI: 10.1109/70.880803.
  8. Xiao Y, Lim KB. Virtual stereovision system: New understanding on single-lens stereovision using a biprism. Journal of Electronic Imaging 2005; 14(4): 043020. DOI: 10.1117/1.2137654.
  9. Xiao Y, Lim KB. A prism-based single-lens stereovision system: From trinocular to multi-ocular. Image and Vision Computing 2007; 25(11): 1725-1736. DOI: 10.1016/j.imavis.2007.01.002.
  10. Wang D, Lim KB, Kee WL. Geometrical approach for rectification of single-lens stereovision system with a triprism. Machine Vision and Applications 2013; 24(4): 821-833. DOI: 10.1007/s00138-012-0467-8.
  11. Kee WL, Lim KB, Tun ZL, Yading B. New understanding on the effects of angle and position of biprism on single-lens biprism stereovision system. J Electron Imaging 2014; 23(3): 033005. DOI: 10.1117/1.JEI.23.3.033005.
  12. Kee WL, Bai Y, Lim KB. Parameter error analysis of singlelens prism-based stereovision system. J Opt Soc Am A 2015; 32(3): 367-373. DOI: 10.1364/JOSAA.32.000367.
  13. Cui X, Lim KB, Guo Q, Wang D. Accurate geometrical optic model for single-lens stereovision system using a prism. J Opt Soc Am A 2012; 29(9): 1828-1837. DOI: 10.1364/JOSAA.29.001828.
  14. Wu L, Zhu J, Xie H. A modified virtual point model of the 3D dic technique using a single camera and a bi-prism. Measurement Science and Technology 2014; 25: 115008. DOI: 10.1088/0957-0233/25/11/115008.
  15. Wu L, Zhu J, Xie H. Single-lens 3D digital image correlatio system based on a bilateral telecentric lens and a bi-prism: validation and application. Appl Opt 2015; 54(26): 7842-7850. DOI: 10.1364/AO.54.007842.
  16. Zhang Z. Flexible camera calibration by viewing a plane from unknown orientations. Proc International Conference on Computer Vision 1999; 666-673.
  17. Cui X, Lim KB, Zhao Y, Kee WL. Single-lens stereovision system using a prism: position estimation of a multi-ocular prism. J Opt Soc Am A 2014; 31(5): 1074-1082. DOI: 10.1364/JOSAA.31.001074.
  18. Cui X, Zhao Y, Lim K, Wu T. Perspective projection model for prism-based stereovision. Opt Express 2015; 23(21): 27542-27557. DOI: 10.1364/OE.23.027542.
  19. Lim KB, Qian B. Biprism distortion modeling and calibration for a single-lens stereovision system. J Opt Soc Am A 2016; 33(11): 2213-2224. DOI: 10.1364/JOSAA.33.002213.
  20. Qian B, Lim KB. Image distortion correction for single-lens stereo vision system employing a biprism. Journal of Electronic Imaging 2016; 25(4): 043024. DOI: 10.1117/1.JEI.25.4.043024.
  21. Genovese K, Casaletto L, Rayas J, Flores V, Martinez A. Stereo-digital image correlation (DIC) measurements with a single camera using a biprism. Optics and Lasers in Engineering 2013; 51(3): 278-285. DOI: 10.1016/j.optlas­eng.2012.10.001.
  22. Bendall C, Lia R, Salvati J, Chilek T. Stereo-measurement borescope with 3-D viewing. US Patent 7,564,626; published on Jule 21, 2009.
  23. Nakano S, Hori F, Ogawa K. Endoscope device and endoscopi image distortion correction method. US Patent 8,979,743; published of March 15, 2015.
  24. Takata Y, Torigoe T, Kobayashi E, Sakuma I. Distortion correction of wedge prism 3D endoscopic images. Proc 7th Asian-Pacific Conference on Medical and Biological Engineering (APCMBE 2008) 2008: 750-753. DOI: 10.1007/978-3-540-79039-6_185.
  25. Machikhin AS, Gorevoy AV. Calibration of miniature prism-based stereoscopic imagers for precise spatial measurements. Proc SPIE 2015; 9917: 991707. DOI: 10.1117/12.2229837.
  26. Machikhin AS, Gorevoy AV, Perfilov AM. Accuracy evaluation for the non-contact area defect measurement at the complex shape-surfaces under videoendoscopic control [In Russian]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics 2014; 14: 140-148.
  27. Wu C, Jaramaz B, Narasimhan S. A full geometric and photometric calibration method for oblique-viewing endoscope. Computer Aided Surgery: Official Journal of the International Society For Computer Aided Surgery 2010; 15(1-3): 19-31. DOI: 10.3109/10929081003718758.
  28. Brown DC. Decentering distortion of lenses. Photometric Engineering 1966; 32: 444-462.
  29. Kanatani K. Statistical optimization for geometric computation: Theory and practice. Mineola: Dover Publications; 2005.
  30. Mallon J, Whelan PF. Which pattern? Biasing aspects of planar calibration patterns and detection methods. Pattern Recogn Lett 2007; 28(8): 921-930. DOI: 10.1016/j.pat­rec.2006.12.008.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: ko@smr.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20