Diffractive elements for imaging optics of mobile communication devices
Greisukh G.I., Ezhov E.G., Kazin S.V., Stepanov S.A.

Penza State University of Architecture and Construction, Penza, Russia

Abstract:
An estimate of the permissible width of the working spectral range of optical systems with diffractive elements is given. It takes into account the interval of the angles of incidence of the radiation on the microstructure of the element and it proceeds from the requirement that there is no halo in the image that is visualized by the LCD monitor. It is shown that the design parameters of diffractive elements intended for mobile device cameras are quite achievable for today's technologies of mass production of plastic optics.

Keywords:
diffraction efficiency, relief-phase diffraction microstructure, halo, diffractive lens.

Citation:
Greisukh GI, Ezhov EG, Kazin SV, Stepanov SA.Diffractive elements for imaging optics of mobile communication devices. Computer Optics 2017; 41(4): 581-584. DOI: 10.18287/2412-6179-2017-41-4-581-584.

References:

  1. Missig MD, Morris GM. Diffractive optics applied to eyepiece design. Appl Opt 1995; 34(14): 2452-2461. DOI: 10.1364/AO.34.002452.
  2. Hua H, Ha Y, Rolland JP. Design of an ultralight and compact projection lens. Appl Opt 2003; 42(1): 97-107. DOI: 10.1364/AO.42.000097.
  3. Flores A, Wang MR, Yang JJ. Achromatic hybrid refractive–diffractive lens with extended depth of focus. Appl Opt 2004; 43(30): 5618-5630. DOI: 10.1364/AO.43.005618.
  4. Wood AP, Rogers PJ. Diffractive optics in modern optical engineering. Proc SPIE 2005; 5865: 58650B. DOI: 10.1117/12.624558.
  5. Rostalski H-J. Use of diffractive lenses in lithographic projection lenses. International Optical Design Conference 2006: WD4.
  6. Dutta UL, Hazra L. Monochromatic primary aberrations of a diffractive lens on a finite substrate. Appl Opt 2010; 49(18): 3613-3621. DOI: 10.1364/AO.49.003613.
  7. Greisukh GI, Ezhov EG, Levin IA, Kalashnikov AV, Stepanov SA. Modeling and investigation superachromato­zation refractive and refractive-diffractive optical systems [In Russian]. Computer Optics 2012; 36(3): 395-404.
  8. Soskind YG. Diffractive optics technologies in infrared systems. Proc SPIE 2015; 9451: 94511T. DOI: 10.1117/12.2176828.
  9. Peng Y,Fu Q, Amata H, Su Sh, Heide F, Heidrich W. Computational imaging using lightweight diffractive-ref­ractive optics. Opt Express 2015; 23(24): 31393-31407. DOI: 10.1364/OE.23.031393.
  10. Piao M, Cui Q, Zhang B. Achromatic negative index lens with diffractive optics. J Opt 2015; 17(2): 025608. DOI: 10.1088/2040-8978/17/2/025608.
  11. Greisukh GI, Ezhov EG, Kazin SV, Stepanov SA. Visual assessment of the influence of adverse diffraction orders on the quality of image formed by the refractive-diffractive optical system [In Russian]. Computer Optics 2014; 38(3): 418-424.
  12. Greisukh GI, Ezhov EG, Kazin SV, Stepanov SA. Single-layer kinoforms for cameras and video cameras of mobile communication devices [In Russian]. Computer Optics 2016; 41(2): 218-226. DOI: 10.18287/0134-2452-2017-41-2-218-226.
  13. Greisukh GI, Ezhov EG, Kazin SV, Stepanov SA. Effect of side diffraction orders on imaging quality produced by a refractive/diffractive objective in a digital camera. J Opt Techn 2016; 83(3): 159-162. DOI: 10.1364/JOT.83.000159.
  14. Edmund Optics: plastic hybrid aspheric lenses. Source: <https://www.edmundoptics.com/optics/optical-lenses/asphe­riclenses>.
  15. Greisukh GI, Danilov VA, Ezhov EG, Levin IA, Stepanov SA, Usievich BA. Comparison of electromagnetic and scalar methods for evaluation of efficiency of diffractive lenses for wide spectral bandwidth. Opt Commun 2015; 338: 54-57. DOI: 10.1016/j.optcom.2014.10.037.
  16. Greisukh GI, Danilov VA, Ezhov EG, Stepanov SA, Usievich BA. Spectral and angular dependences of the efficiency of diffraction lenses with a dual-relief and two-layer microstructure. J Opt Technol 2015; 82(5): 308-311. DOI: 10.1364/JOT.82.000308.
  17. Greisukh GI, Danilov VA, Ezhov EG, Stepanov SA, Usievich BA. Spectral and angular dependences of the efficiency of relief-phase diffractive lenses with two- and three-layer microstructures. Opt Spectrosc 2015; 118(6): 964-970. DOI: 10.1134/S0030400X15060090.
  18. Buralli DA, Morris GM, Rogers JR. Optical performance of holographic kinoforms. Appl Opt 1989; 28(5): 976-983. DOI: 10.1364/AO.28.000976.
  19. Artamonov ON. Parameters of modern LCD monitors: Objective and subjective [In Russian]. Source: <http://fcen­ter.ru/online/hardarticles/monitors/20214>.
  20. RefractiveIndex. Info Zeonex E48R. Source: <https://re­fractiveindex.info/?shelf=other&book=ZeonexE48R&page=Sultanova>.
  21. Color glass spectral transmittance. Source: <http://www.elek­trosteklo.ru/Color_Glass_Spectral_Transmittance.pdf>.
  22. Margulis D. Photoshop LAB color: The conyon conundrum and other adventures in the most powerful colorspace. Peachpit Press; 2005. ISBN: 978-0-321-35678-9.
  23. Greisukh GI, Ezhov EG, Stepanov SA. Taking diffractive efficiency into account in the design of refractive/diffrac­tive optical systems. J Opt Technol 2016; 83(3): 163-167. DOI: 10.1364/JOT.83.000163.
  24. Greisukh GI, Ezhov EG, Kazin SV, Stepanov SA. Layout and design of a periscope-type refraction–diffraction objective for a mobile communication device. J Opt Technol 2016; 83(11): 687-691. DOI: 10.1364/JOT.83.000687.
  25. Greisukh GI, Ezhov EG, Sidyakina ZA, Stepanov SA. Design of plastic diffractive–refractive compact zoom lenses for visible–near-IR spectrum. Appl Opt 2013; 52(23): 5843-5850. DOI: 10.1364/AO.52.005843.
  26. Edmund Optics. Source: <http://www.edmundoptics.com>.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: ko@smr.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20