Traffic extreme situations detection in video sequences based on integral optical flow

Chen H.1, Ye S.1, Nedzvedz A.3,4, Nedzvedz O.2, Lv H.1, Ablameyko S.3,4

1 Zhejiang Shuren University, Hangzhou, China,

2 Belarusian State Medical University, Minsk, Belarus,

3 Belarusian State University, Minsk, Belarus,

4 United Institute of Informatics Problems of National Academy of Sciences, Minsk, Belarus

Аннотация:
Road traffic analysis is an important task in many applications and it can be used in video surveillance systems to prevent many undesirable events. In this paper, we propose a new method based on integral optical flow to analyze cars movement in video and detect flow extreme situations in real-world videos. Firstly, integral optical flow is calculated for video sequences based on optical flow, thus random background motion is eliminated; secondly, pixel-level motion maps which describe cars movement from different perspectives are created based on integral optical flow; thirdly, region-level indicators are defined and calculated; finally, threshold segmentation is used to identify different cars movements. We also define and calculate several parameters of moving car flow including direction, speed, density, and intensity without detecting and counting cars. Experimental results show that our method can identify cars directional movement, cars divergence and cars accumulation effectively.

Ключевые слова:
integral optical flow, image processing, road traffic control, video surveillance

Цитирование:
Chen H, Ye S, Nedzvedz A, Nedzvedz O, Lv H, Ablameyko S. Traffic extreme situations detection in video sequences based on integral optical flow. Computer Optics 2019; 43(4): 647-652. DOI: 10.18287/2412-6179-2019-43-4-647-652.

Литература:

  1. Al-Sakran, H.O. Intelligent traffic information system based on integration of internet of things and agent technology / H.O. Al-Sakran // International Journal of Advanced Computer Science and Applications. – 2015. – Vol. 6. – P. 37-43.
  2. Ao, G.C. Discrete analysis on the real traffic flow of urban expressways and traffic flow classification / G.C. Ao, H.W. Chen,, H.L. Zhang // Advances in Transportation Studies. – 2017. – Vol. 1, Special Issue. – P. 23-30.
  3. Cao, J. Research on urban intelligent traffic monitoring system based on video image processing / J. Cao // International Journal of Signal Processing, Image Processing and Pattern Recognition. – 2016. – Vol. 9. – P. 393-406.
  4. Rodríguez, T. An adaptive, real-time, traffic monitoring system / T. Rodríguez, N. García // Machine Vision and Applications. – 2010. – Vol. 21. – P. 555-576.
  5. Kastrinaki, V. A survey of video processing techniques for traffic applications / V. Kastrinaki, M. Zervakis, K. Kalaitzakis // Image and Vision Computing. – 2003. – Vol. 21. – P. 359-381.
  6. Huang, D.Y. Reliable moving vehicle detection based on the filtering of swinging tree leaes and raindrops / D.Y. Huang, C.H. Chen, W.C. Hu, [et al.] // Journal of Visual Communication and Image Representation. – 2012. – Vol. 23. – P. 648-664.
  7. Zhang, W. Moving vehicles detection based on adaptive motion histogram / W. Zhang, Q.M.J. Wu, H.B. Yin // Digital Signal Processing. – 2010. – Vol. 20. – P. 793-805.
  8. Joshi, A. Review of traffic density analysis techniques / A. Joshi, D. Mishra // International Journal of Advanced Research in Computer and Communication Engineering. – 2015. – Vol. 4, Issue 7. – P. 209-213.
  9. Nagaraj, U. Traffic jam detection using image processing / U. Nagaraj, J. Rathod, P. Patil, S. Thakur, U. Sharma // International Journal of Engineering Research and Applications. – 2013. – Vol. 3, Issue 2. – P. 1087-1091.
  10. Shafie, A.A. Smart video surveillance system for vehicle detection and traffic flow control / A.A. Shafie, M.H. Ali, H. Fadhlan, R.M. Ali // Journal of Engineering Science and Technology. – 2011. – Vol. 6, Issue 4. – P. 469-480.
  11. Khanke, P. A technique on road traffic analysis using image processing / P. Khanke, P.S. Kulkarni // International Journal of Engineering Research and Technology. – 2014. – Vol. 3, – P. 2769-2772.
  12. Kamath, V.S. Content based indexing and retrieval from vehicle surveillance videos using optical flow method / V.S. Kamath, M. Darbari, R. Shettar // International Journal of Scientific Research. – 2013. – Vol. II, Issue IV. – P. 4-6.
  13. Cheng, J. SegFlow: Joint learning for video object segmentation and optical flow / J. Cheng, Y.H. Tsai, S. Wang, M.H. Yang // 2017 Proceedings of International Conference on Computer Vision. – 2017. – P. 686-695.
  14. Zhang, W. Event recognition of crowd video using corner optical flow and convolutional neural network / W. Zhang, Y. Hou, S. Wang // Proceeding of Eighth International Conference on Digital Image Processing. – 2016. – P. 332-335.
  15. Ravanbakhsh, M. Plug-and-play CNN for crowd motion analysis: An application in abnormal event detection [Electronical Resource] / M. Ravanbakhsh, M. Nabi, H. Mousavi, E. Sangineto, N. Sebe. – URL: https://arxiv.org/abs/1610.00307 (request date 10.04.2019).
  16. Andrade, E.L. Modelling crowd scenes for event detection / E.L. Andrade, S. Blunsden, R.B. Fisher // Proceedings of 18th International Conference on Pattern Recognition. – 2006. – Vol. 1. – P. 175-178.
  17. Wang, Q. Hybrid histogram of oriented optical flow for abnormal behavior detection in crowd scenes / Q. Wang, Q. Ma, C.H. Luo, H.Y. Liu, C.L. Zhang // International Journal of Pattern Recognition and Artificial Intelligence. – 2016. – Vol. 30, Issue 2. – P. 210-224.
  18. Mehran, R. Abnormal crowd behavior detection using social force model / R. Mehran, A. Oyama, M. Shah // Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. – 2009. – P. 935-942.
  19. Chen, C. Integral optical flow and its applications for dynamic object monitoring in video / C. Chen, S. Ye, H. Chen, O. Nedzvedz, S. Ablameyko // Journal of Applied Spectroscopy. – 2017. – Vol. 84. – P. 120-128.
  20. Chen, H. Application of integral optical flow for determining crowd movement from video images obtained using video surveillance systems / H. Chen, S. Ye, O. Nedzvedz, S. Ablameyko // Journal of Applied Spectroscopy. – 2018. – Vol. 85. – P. 126-133.

     


© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20