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Abstract 

Using simplified Richards-Wolf formulas we show that laser light with azimuthal polarization 
and singular phase can produce a smaller focal spot than that from a laser beam with radial polari-
zation, other conditions remaining the same. It is numerically shown that when focusing an  azi-
muthally polarized laser beam with phase singularity using a zone plate a 1.3 times smaller focal 
spot can be attained than when an aplanatic lens is used. A spiral phase plate can be replaced with 
a phase step with a π-phase shift. In this case the subwavelength focal spot from a laser beam with 
azimuthal polarization, which is formed near the zone plate surface, loses circular symmetry, while 
becoming smaller and acquiring an elliptical form with radiuses of 0.273λ and 0.314λ (NA = 1). 
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Introduction 

It has been numerically shown [1] that a Bessel-Gauss 
laser beam with azimuthal polarization having passed 
through a spiral phase plate (SPP) with the unit topological 
charge forms at the focus of a high-NA lens a subwave-
length circular focal spot that is smaller in diameter than for 
radially polarized incident light. Using the Richards-Wolf 
formulas [2], it was also shown [1] that for an aplanatic 
spherical lens with NA = 1.4 (immersion with a refractive 
index of n = 1.518), for the azimuthal polarization and singu-
lar phase the focal spot size at half intensity was 
FWHM = 0.34λ, whereas radially polarized light produced 
the focal spot of size FWHM = 0.40λ in the same conditions, 
λ is the wavelength in vacuum [3]. However, no final formu-
las to describe the intensity of azimuthally polarized light,  
transmitted through an SPP, in the focus of the aplanatic lens 
were proposed in [1-3]. In [4], it was numerically and exper-
imentally found that a Bessel-Gauss laser beam with azi-
muthal polarization having passed through a SPP and a fo-
cused by a lens with NA = 1.4 produced a focal spot of size 
FWHM = 0.25λ. This is certainly a fairly good result, but it 
does not correspond with the results reported in [1, 3]. 

In [4] an incomplete formula for the electric field vec-
tor in the focus of the lens for an azimuthally polarized 
laser beam having passed through a SPP was proposed. In 
that formula, there was an explicit azimuthal dependence 
of the amplitude and the focal spot was shown not to be 
circular. Other known papers reported studies of the tight 
focus of inhomogeneously polarized laser vortex beams 
(with radial and azimuthal polarization) by means of 
phase diffractive optical elements with a singular phase 
[5,6]. The size of the focal spot can be further reduced us-
ing a circular aperture [7,8]. 

In this paper, we show that the intensity distribution 
in the focus of an aplanatic lens from an azimuthally po-

larized laser beam having passed through a SPP is radial-
ly symmetric. Based on the derived relations, we qualita-
tively show that the diameter of the focal spot from an az-
imuthally polarized field with singular phase is smaller 
than that from a radially polarized field, other conditions 
remaining the same. Also, we show numerically that by 
replacing the SPP with a phase step with the π-phase de-
lay an elliptical focal spot of a smaller size is found in the 
focus of the zone plate, instead of a circular one. Note 
that the sharp focus of a laser beam with linear polariza-
tion having passed through a phase step with π-phase de-
lay was considered in [9]. 

Theoretical comparison of focusing light beams 
with radial and azimuthal polarizations 

The electric field vector of a coherent electromagnetic 
wave in the focus of an aplanatic lens is given by [2,3]: 
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where (r, φ, z) are cylindrical coordinates in the focal plane, 
(θ, ψ) are the polar and azimuthal angles between the geo-
metrical focus point and the exit pupil of the aplanatic lens, k 
is the wave number, n is the refractive index of the medium 

in the focal plane, and 0 arcsin
NA

n
θ  =  

 
 is the angle aper-

ture of the lens. The complex amplitude of an incident wave, 
for example, a Bessel-Gauss beam can be found as: 
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where β – parameter equal to the ratio of the radius of the 
pupil of the lens to the radius of the laser beam waist. 

Matrix 3x3 in (1) can be expressed as: 
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The polarization vector of the incident light field in 
(1) can be found as: 

[ ]( ) sin , cos , 0ψ = − ψ ψP  (4) 

for azimuthal polarization and 

[ ]( ) cos , sin , 0ψ = ψ ψP  (5) 

for radial polarization. 
Substituting (4) in (1) and taking into account (3), we 

find that for the azimuthal polarization only one azimuth-
al projection of the electric vector contributes to the focal 
spot (with the other projections being equal to zero): 
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where J1(x) is the Bessel function of the first order. 
It can be seen from (6) that a bright ring with an in-

tensity null on the optical axis is formed. 
To obtain an intensity maximum on the axis it was 

proposed in [1] that the lens be illuminated by azimuthal-
ly polarized light having passed through a SPP with 
transmittance ( ) ( )expF imψ ψ= , where m = 1. In this 

case instead of the function E(θ) in (1) the function 
E(θ) =  exp(iφ) needs to be considered. Then from (6) we 
obtain only two transverse Cartesian coordinates of the 
electric vector: 
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Expression similar to (7) and (8), but incomplete, 
were derived in [4]. It is seen from (7) and (8) that the 
complex amplitude explicitly depends on the azimuthal 
angle φ. That is, it is not clear from these formulas, 
whether or not the focal spot is circular. However, if we 
write the expression for the intensity in the focal plane (at 
z = 0), the circular symmetry of the focal spot is obvious: 

( )

( )

0

0

22

2

1/2
2

0

2

1/2
0

0

( )

2 sin cos ( ) sin

2 sin cos ( ) sin .

az x yI r E E

E J krn d

E J krn d

θ

θ

= + =

= π θ θ θ θ θ +

π θ θ θ θ θ

∫

∫

 (9) 

For comparison, we write down the non-zero projec-
tion of the electric vector for the radially polarized light 
field in focus, derived from (1), (3) and (5): 
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From (10) and (11), the radially polarized field is seen 
to have in the focus only two projections of the electric 
vector: the transverse radial and longitudinal axial ones. 
From (10) and (11) we obtain the intensity distribution in 
the focal plane (z = 0) for the radial field: 
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From the comparison of (9) and (12) it is difficult to de-
termine which of the foci is smaller in diameter (for a radial-
ly polarized beam or an azimuthally polarized beam with 
singular phase). Although in front of the terms in (12) is 
four, and (9) - two, the terms themselves are different. In the 
second term in (9) and (12) is the same zero-order Bessel 
function, but in (12) there is  the sine squared, which gives a 
smaller area under the curve  than when a sine function is 
used. Therefore, a two-times difference in the coefficients 
can be compensated due to different integrands. The same 
applies to the first term in (9) and (12). 

In (9) is the second-order Bessel function, in which the 
area under the curve is smaller than that of the first-order 
Bessel function, which is the first term in (12), but the cosine 
in (12) to the power 3/2 has a smaller area, than cosine to the 
power 1/2, which is found in (9). It is possible to accurately 
calculate the maximum intensity at the focus of the two 
beams (9) and (12) when the lens is illuminated by a plane 
wave with a unit amplitude and maximum numerical aper-
ture in free space: E(θ) = 1 and θ0 = π / 2. 

Then, (9) and (12) on the optical axis (at r = 0) take the 
form: 
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From (13) and (14) it follows that the ratio of these in-
tensities is nearly equal to 1: 

/ 0.9673az radI I = . (15) 

It can be concluded that the second terms in (9) and (12) 
give almost the same and the main contributions to the focus 
size, and if there is a difference in the size of both foci, it is 
determined by the first terms in (9) and (12). 

It can be evaluated qualitatively which of the first 
terms in (9) and (12) drops faster with increasing radial 
coordinate. For this we use a reference integral [10]: 
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In (16), Г(x) is the gamma function and the hyperge-
ometric function is given by [11] 
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The first term in (9) is proportional to the square of 
the integral (E(θ)  = 1 and θ0 = π / 2): 
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and the first term in (12) is proportional to the square of a 
different integral (n = 1): 
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It is seen from (18) and (19) that with increasing of r 
(kr << 1) they increase quadratically and linearly, respec-
tively (taking into account that 1F2(0) = 1). For small val-
ues of the argument (kr << 1) the linear function is grow-
ing faster than quadratic. The second term in (9) and (12) 
subside at about the same rate, since they have the same 
maximum (15). Therefore, the first term in (9) adds a 
smaller positive value to the second decreasing term than 
the first term in (12) does to the second decreasing term. 
Thus, the sum of the two terms in (9) decreases faster 
with increasing r than the sum of the terms in (12). This 
trend is not impeded but helped by the decrease of the 
hypergeometric function in (18) and (19). 

Indeed, from the form of the hypergeometric function 
in (17), the coefficients of the argument x are seen to be 
be proportional to 2 / k in (18) and to (2k+1)!! / (2k+2)!! in 
(19). That is, given the same value of the function argu-
ment (17), each member of a set of the hypergeometric 
function in (18) is smaller in absolute value than the cor-
responding term of the hypergeometric function in (19). 
That is the hypergeometric function in (18) decreases 
more rapidly with increasing r, than the hypergeometric 

function in (19) does. This means that in (19), the linear 
term  grows faster and the hypergeometric function sub-
sides more slowly than grows the quadratic term and re-
cedes the hypergeometric function in (18). From the 
above reasoning it follows that the diameter of the focal 
spot for the azimuthal polarization with a singular phase 
(9) is smaller than the diameter of the focal spot for the 
beam with radial polarization (12), other conditions re-
maining the same. 

In addition, we show that for small values of the ar-
gument of the Bessel functions (kr << 1) the intensity 
function (9) and (12) fall down in different ways. 

Taking into account (16), instead of (9) and (12) we 
can write (E(θ) = 1 and θ0 = π / 2): 
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It is follows from (17) when x << 1 that 

( )1 2 , , , 1 ( / )F b c d x b cd x≈ + . (22) 

Taking into account (22) when kr << 1 instead of (20) 
and (21) we can write with accuracy up to series mem-
bers (kr)4: 

( )( )220.89 1 0.29azI kr≈ π − , (23) 

( )( )220.92 1 0.26radI kr≈ π − . (24) 

Note that similarly to (20) and (21) in [12] it was  
shown that the rate of intensity decrease in the focus for 
the azimuthal polarization with singular phase is the same 
as that for the radial polarization (see eqs. (23) and (31) 
in [12]). But in [12] the authors did not consider a posi-
tive contribution of the first summand in braces in (21). 
This is the summand that makes a slower decrease of the 
intensity in the case of radial polarization. 

From (23) and (24) we see that for small arguments 
(kr << 1) the intensity in the focus varies quadratically: in 
the case of the azimuthal polarization the intensity de-
creases faster than for the radial polarization. This means 
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that the intensity of focus for the beam with the azimuthal 
polarization drops faster (and thus has a smaller focus di-
ameter) than for a beam with radial polarization. This was 
confirmed by the numerical results reported in [1,3,4]. 

In the next section light focusing near a microlens sur-
face is considered. Evanescent waves are accounted for in 
the focus spot forming. The evanescent waves were not 
taken into account in (1). That is why it is expedient to 
check whether the focal spot diameter is smaller near the 
microlens surface when the azimuthal polarization with a 
singular phase is used instead of the radial polarization. 

Numerical comparison of the focusing of light,  
having passed through different phase plates 

Next, we numerically show that, firstly, if we focus 
the azimuthally polarized beam transmitted through a 
SPP by a short-zone plate, the diameter of the focal spot 
is smaller than when we use an aplanatic lens. And sec-
ondly, if the azimuthally polarized beam is passed 
through the phase step with a phase delay of π, the focal 
spot loses radial symmetry, but is reduced in size. 

Let a laser mode with azimuthal polarization fall onto 
an SPP with transmittance of F(ϕ) = exp(imϕ) when 
m = 1. The electric vector amplitude has the following 
projections on the transverse Cartesian coordinates: 

( )2 2( , ) exp ( / ) sinxE r r r wϕ = − − ϕ , 

( )2 2( , ) exp ( / ) cosyE r r r wϕ = − ϕ . (25) 

After passing through the SPP the projection of the 
electric vector (25) will be: 

( )2 2( , ) exp ( / ) sinxE r r r w iϕ = − − + ϕ ϕ , 

( )2 2( , ) exp ( / ) cosyE r r r w iϕ = − + ϕ ϕ . (26) 

The light field (21) still has the azimuthal polarization 
and has no longitudinal component of the electric vector. 
Next, the light field (21) falls on a short-focus binary mi-
crolens (zone plate, ZP) (Fig. 1) with a focal length of 
f = 532 nm (numerical aperture ZP NA = 0.995). The laser 
light wavelength is λ = 633 nm. The ZP relief depth was 
equal to 510 nm, and the diameter – 14 µm. The ZP had 
12 rings and the central disk and made on a resist with the 
refractive index 1.52. This ZP was chosen for modeling 
because it was earlier used for the experiments on the 
tightly focused laser light [13]. A wavelength of 633 nm 
(rather than 532 nm) was chosen because at first the mi-
cropolarizers were made to convert linear polarization to 
radial and azimuthal polarizations, and they operate on 
this wavelength [14]. The focusing of light with ampli-
tude (26) using a ZP (Figure 1) was numerically simulat-
ed by FDTD method, realized in FullWave software. The 
grid discretization step was equal to 0.02 µm. Other 
simulation parameters: the size of the calculation area is 
10x10 µm, the Gaussian beam radius w = 3.5 µm. Fig. 2a 
shows the intensity of the beam (25) incident on the SPP. 
Fig. 2b depicts the phase of the SPP. 

Fig. 3 shows the amplitude (a, c) and phase (b, d) for 
the projections of the electric vector of the light field 
passed through the SPP and falling on the ZP (see 

Fig. 1.): Ex (a, b) and Ey (c, d). It is seen from Fig. 3 that 
the polarization of the light field after the SPP is no long-
er azimuthal. 

 
Fig. 1. The view of the simulated ZP in a FullWave window with 

overlayed intensity of an incident field (negative) 
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Fig. 2. The intensity |E|2 (negative) of the beam (25) with 
azimuthal polarization (a) and the phase of the SPP (b) 

0 2 4-2-4

0

2

4

-2

-4

0 2 4-2-4

ϕ=0 2πI=0 1
Amplitude Phase

Y, mµ
a b

 

0 2 4-2-4

0

2

4

-2

-4

0 2 4-2-4

ϕ=0 2πI=0 1
Amplitude Phase

Y, mµ
c d

 
Fig. 3. The amplitude (a) and phase (b) of Ex field and amplitude 

(c) and phase (g) of Ey field incident on the ZP (Fig. 1) 
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Fig. 4a shows the intensity profile in the focus of the ZP 
in Fig. 3 (at a distance z = 40 nm).  

а) 0 1 2-1-2
0

1

2

3

4

5

6 I, a.u.

R, mµ

 

б) 0 0.1 0.2 0.3
0.31

0.33

0.35

0.37

FWHM, λ

3

2

4

1

5

6

7

8

9
10

I, a.u.

Along X 
Along Y 
I, along Z 

 
Fig. 4. The radial profile of the intensity in the ZP focus (Fig. 1) 
of the azimuthally polarized field with a phase singularity (Fig. 

3) (a) and the dependence of the focal spot diameter at half 
intensity (FWHM) on the longitudinal coordinate z (b); 

dependence of intensity on the optical axis on the Z value 

Fig. 4b shows the dependence of the FWHM (in wave-
lengths) on the longitudinal coordinate z after the ZP. The 
diameter of the focal spot at a distance z = 40 nm is equal to 
FWHM = 0.324λ, and at the distance z = 200 nm it is equal to 
FWHM = 0.372λ. The maximum intensities at the focus at 
these distances (in arbitrary units) are: Imax (z = 40 nm) = 5.4 
and Imax (z = 200 nm) = 1.712. For comparison, the diameter 
of the focal spot of a Bessel-Gaussian beam with an azi-
muthal polarization and singular phase focused with an ap-
lanatic lens with a numerical aperture NA = 1.4 is 
FWHM = 0.34λ [1, 3]. Up to a calculation error (0.02λ) the 
diameters of these focal points coincide, but the numerical 
aperture in [1, 3] is 1.4 times greater. 

Note that for the light of wavelength λ = 532 nm inci-
dent on the ZP, the size of the focal spot (Fig. 5a) at a 
distance of z = 500 nm from ZP is smaller in wavelengths 
(FWHM = 0.34λ), than for the wavelength of λ = 633 nm 
at a distance of z = 200 nm (FWHM = 0.372λ). Although 
in the focus (z = 500 nm), the focal spot is not round any 
more (Fig. 5b). The use of the wavelength of 633 nm is 
due to the perspective of experiments with a micropolar-
izer [14] designed for this wavelength of light. 

Interestingly, the replacement of the SPP by the phase 
step with phase delay of π leads to a reduction in the focal 
spot size. In this case, the ZP is illuminated by the light 
field (25) whose amplitude is multiplied by -1 if the coor-

dinate y<0. In this case, the polarization of the light field 
incident on the ZP is shown in Fig. 6. It can be seen that 
the polarization is azimuthal, but diametrically opposite 
points of the field have the mutually opposite direction of 
the polarization vector. Note that the polarization is not de-
fined on the line of the phase jump (horizontal line). 

а)  

б)  
Fig. 5. The radial profile of the intensity in the ZP focus (Fig. 1) 
of azimuthally polarized field with a phase singularity (Fig. 3) 

(a) and the dependence of the focal spot diameter at half 
intensity (FWHM) on the longitudinal coordinate z (b) for the 

parameters, similar to fig. 4, but the incident light wavelength is 
532 nm 

 
Fig. 6. The intensity |E|2 with arrows that indicate the direction 

of polarization 

Fig. 7 shows the intensity profiles in the focal spot on 
the x- (solid line) and y-axes (dashed line) at different dis-
tances z from the ZP: z = 40 nm (a) and z = 200 nm (b). 

Fig. 7 shows that the size of the focal spot along a 
phase jump line (x axis) is smaller than in the direction 
perpendicular to the phase jump line (y-axis). Although 
the side lobes along the x-axis adjacent to the focus 
amount to up to 30% of the maximum intensity. 

Fig. 8a shows the dependence of the focal spot size 
FWHM (in wavelengths) on the x- and y-axes on the dis-
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tance to the ZP. The solid curve in Fig. 8a - the focal spot 
size along the x-axis (y = 0), the dashed curve - along the 
y axis (x = 0).  

a)  

b)  
Fig. 7. The central section of the focal spot intensity (solid line 

along the x axis, dashed line along y axis) at a distance 
of 40 nm from the ZP (a) and 200 nm (b) 

Fig. 8b shows the dependence of the intensity in the 
center of the focal spot on the distance to the ZP. It is seen 
from Fig. 8 that at the distance z = 40 nm, the size of the 
focal spot at half intensity is equal to FWHMx = 0.239λ, 
FWHMy = 0.273λ, and at the distance z = 200 nm, the focal 
spot size is greater: FWHMx = 0.273λ, FWHMy = 0.314λ. 
The maximum intensity in the focus in relative units at 
these distances is equal to: Imax (z = 40 nm) = 3.67 and 
Imax (z = 200 nm) = 1.4. 

From the comparison of Fig. 4b and Fig. 8a it can be 
seen that at distance z = 200 nm, the focal spot size for a 
beam with azimuthal polarization that has passed through 
the phase step, is smaller than FWHMy = 0.314λ. And the 
diameter of the focal spot of the beam with azimuthal polari-
zation that has passed through the SPP, is larger than 
FWHM = 0.324λ. 

A comparison with light focusing with radially polar-
ized light can be seen from fig. 9. 

All simulation parameters are the same except the in-
cident field, which is describer by 

( )2 2( , ) exp ( / ) cosxE r r r wϕ = − ϕ , 

( )2 2( , ) exp ( / ) sinyE r r r wϕ = − ϕ . (27) 

instead of (25). 
The size of the focal spot at the same distance 

(z = 500 nm) is FWHM = 0.388λ, the focal spot has a round 
shape. Also the FWHM is wider in λ, it is about 9 nm tighter 

in absolute value in comparison with Fig. 5a. It is also seen 
that the focal spot maximum intensity is 1.8 times higher 
than for azimuthal polarization with phase singularity. 

a)   

b)  
Fig. 8. The size of the focal spot along the axes x (solid line) 

and y (dashed line), depending on the distance from the ZP (a) 
and the dependence of the maximum of intensity in the focus on 

the distance along the z axis (b) 

 
Fig. 9. The radial cross-section of the intensity in the ZP focus, 
when radial polarization is used. The wavelength is λ=532 nm, 

all other parameters are the same Fig. 5 

Conclusion 

We have obtained the following results. Using Richards-
Wolf formulas, the expression for the intensity distribution 
in the focus of an aplanatic lens for a laser beam with an az-
imuthal polarization that has passed through a spiral phase 
plate with the a unit topological charge has been derived. 
This expression, which consists of the sum of two integral 
transformations, is theoretically compared with the expres-
sion for the intensity in the focus of a beam with radial po-
larization. It follows from the comparison that the diameter 
of the focus of the beam with the azimuthal polarization and 
phase singularity is smaller than the diameter of the focus of 
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the beam with radial polarization. This is confirmed by the 
numerical results obtained by other authors. Besides, the 
light field in the focus of the beam with azimuthal polariza-
tion and singular phase has no longitudinal component, and 
in contrast, the field in the focus of the beam with radial po-
larization basically consists of a longitudinal component. It 
is shown numerically using FDTD method, that the diameter 
of the subwavelength focus (FWHM = 0.372λ, λ = 633 nm) 
in the vicinity of a binary zone plate (NA = 0.995) for a laser 
beam with azimuthal polarization and singular phase (passed 
through a spiral phase plate with the unitary topological 
charge) is approximately 1.3 times smaller than the focal 
spot diameter (FWHM = 0.34λ at NA = 1.4) for the same 
beam, but obtained using an aplanatic lens with the same 
numerical aperture. 

The width of the focal spot near the surface of the 
zone plate is equal to FWHM = 0.34λ (azimuthal polar-
izartion) and FWHM = 0.39λ (radial polarization) for the 
wavelength of 532 nm. 

It has been shown numerically that focusing by the zone 
plate (NA = 0.995) of an azimuthally polarized laser beam 
that has passed through a phase step with a π-phase delay 
produces an elliptical subwavelength focal spot 
(FWHMx = 0.273λ, FWHMy = 0.314λ). The spot size was 
found to be smaller than that (FWHM = 0.372λ) formed by 
the transmission through the spiral phase plate. 
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