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Introduction

Master equations for the density matrix of a quant
dynamical system (QDS) interacting with the envirg
ment are widely used in atomic spectroscopy, |pbgs-
ics, nonlinear optics [1]. For the description pbstane-
ous relaxation, the environment is modeled by dinita
set of harmonic oscillators in a thermodynamic oy
um, characterized by the temperatiife, 3].

In recent years, a new direction has been intelysi
developing — the «noisy» optical spectroscopy [4The
basis of this direction is the study of a QDS resgoon
an external stochastic field. The study of relassdies is
actual today because of the experiments in thetrggec
copy of isolated molecules [6] and development udrg
tum information and quantum computing theories T.

In [10], the nonequilibrium density matrix methal
used for studying relaxation of a QDS interactinighva
heat bath and an external stochastic field. Thanoaid
type master equations describing levels populatiasiu-
tion were obtained, and the probabilities of traoss in
a three-level QDS are calculated. In [11, 12], thdia-
tion line shape is calculated for a two-level sysiater-
acting with dichotomous noise.

In [13], the master equation was reduced to a Hekl|
Planck equation by the method of generalized caole
states. The solution of the Fokker-Planck equatamsed
for calculation of the probability for the atom b in an
excited state and shapes of radiation lines inepiees of a
delta-correlated process. Relaxation of a threetlatom
in a heat bath and an external stochastic fieidvisstigat-
ed in [14] for a delta-correlated process and a d<u
Anderson process. Radiation line shapes are oltaime
the explicit form, and the influence of adjaceminsitions
is showed. In [15], the dependence of a solutiorthef
Fokker-Planck equation describing relaxation ofwa-t
level atom in a stochastic field on the order inchhthe
averaging over realizations of the stochastic figldpplied
to the QDS is investigated.

The present paper goal is to obtain the mastertiequa

averaged over stochastic field realizations, toutate radia-
tion lines shapes employing it, and to comparestiepes
with the ones obtained in [14] by perturbation tigeo

1. Problem formulation

-653.

an external stochastic field. We propose a newcgubr

, that allows investigation of the interaction of thtom

np With the stochastic field in the same order of ydxa-
tions theory as used for the interaction with ttetpn
heat bath.

The model Hamiltonian of a quantum system consist-

ing of a three-level atom, a photon heat bath, arstdo-
chastic field is given by

H=H,+H, +H, +H,, (1)
whereH, is the Hamiltonian of the three-level atom
H, =hoyH, +7Q H ,, )

Hr is the Hamiltonian of the photon heat bath, whigh i
modeled by an infinite set of harmonic oscillators,

e

®3)

Har is the Hamiltonian of interaction between the atnd
the heat bath, written in the rotating wave apprtion,

HAAT = hg[( flkj+ + fzkk+ + f3k|:+)6k+ hc], (4)

eHs is the Hamiltonian of interaction between the atom
reand the stochastic field

A, =h(Q(t)H”l+z(t)ﬁ2)+

. . . (5)
+h(&03, +2OR, +AOL +he).

Here, ok is the frequency of thieth mode of the heat
b bath field;bx andby" are creation and annihilation opera-
tors of thek-th mode of the heat bathy, fox andfs are
constants of the atom-field interaction with #hth mode
of the heat bath#; andH; are the diagonal operators de-
fining energy levels of the atonf;, K. andL. are transi-
tion operators between atomic energy levels (BigQit)
and Z(t) define random shifts of atomic energy levels;
&(Y), ¢(t), andA(t) are random functions, proportional to
the stochastic field intensity and defining traiosis be-
tween atomic energy levels. The stochastic prosedse
scribed by the random functio6Xt), Z(t), &(t), ¢(t), and
M(t) are assumed to be ergodic.

In the interaction picture by the atomic subsysted
the heat bath, the interaction energy operatoivengoy

In this paper we consider relaxation of a statign
three-level atom interacting with a photon heahbatd

- " (fy,+ 1) e

CRERT

Va3 + () (6)
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where wherey1, y2, andys are damping constants of the atomic
o subsystem
J (1) = hz f.3e (ooga) 2
Var 1k Y = 2T[| f1j| g(w) @, =00+ (@ /2) ? (14)
7 2
o)) D1 =2t 9@ ) B
+f,Ke 2 4 f, [ d®@ma) 1+ hel, 2
Vs = 21 5| 90| 20 vey (16)
~ . ~ n[%&) ~ Here,g(w;) is the density of states in the heat baih;
V(1) = h(Q(t) H, +=(t) Hz) +h| &(t)e 203+ Nz, andNs are average numbers of photons in the heat bath
®) on the transitions 2> 1, 3— 2, and 3— 1 respectively:
T (00 vat) N, =[ exp(h( 2, +c,) 1 &T)-1" (17)
+{(t)e 2 K, +A(P)€ L+ hc|. 1 p 0T Wo ,
- N, =[exp(hes, / T)- 1", (18)
Izi -
/ @0/ N, = [exp(h(gz0 +w,) /KT) - 1] y (19)
L. | Averaging Eq. (13) over realizations of the stoticas
7 Qptwy/2 field, one can obtain

Fig. 1. Notation of the three-level atom transitigperators

Interaction between the atom, the heat bath, aed|th +Kz(|:|z<A>|:|z‘HA <A>)+
stochastic field is described by the Liouville-vbleu- -

mann equation [1,16]: +(n1 + Ka)(jf<ﬁ> j+ —J :1<A>)+
(0D, /00 =[v (T),ﬁaT]- | @ | +(8,+K)(3.(8)3 -3 3.(p))+
A formal integration of (9) gives +(n2 K, )(K <ﬁ> & B & K <A>) + (20)
Pur (t) =Pt ("mf VERRO]a a0 )R (IR -K . () +
Substituting (10) in (93, we obtain +(n3 + KA)(I:_ <A> |:+ _ |:+ L <f>>) +
(0P.r (t)/at) == /h)[V (t)’paT (to)] + +(53 +K, )(|:+ <’3> L -CLC, <’3>) +
2 FEG () [ (e A (11)
+(=m)" [V (£),[V (€) B (1) ]| . +he,
_ o o o where
Using the irreversibility approximation and the sec ) ;
ond order of perturbation theory for the small iatgion n, = (lez)(Nj +1)' 8 = /2N, j=1,2,5(21)
V(t), the equation (11) can be written for the redutexd- t t
sity operator Ky = I<Q(t) Q(t1)>dt1, K. = KE(t)E (t1)> .,
p(t)=p.(t) =Tr [pui] (12) N :
in the following form Ke :I<E(t)z(tl)>dt1. K, = <Z(t)2(t1)> d,, (22)
(0p/t) = (v /2 (N, +1)(23.63, - 3. 3p-p3 1) + . ’
#N, (23,63 - 3 3551 1)+ (/20 =[O )t
P AR LR KR A_AR R In derivation of Eq. (20) we assumed that average
x[ N, +1)(2K_pK+ K.K-p=pK, K')+ values of all random functions and the two-pointreia-
Soal o oA ap tion functions not presented in (22) are equalemzWe
N, (2K+pK, K-K.ppK.K ) * (va/2) (13) also discarded terms of higher degree of smalliress-
Poar me A an e spect toV(t), which appear when expending average val-
x[ N3+1)(2L7pL+ Lp-pL, L’)+ ues of expressions that contain a product of aaend
+N, (2I:+f>ﬂ, ~LLp-pL ,_)] _ (i/fl)[\@t (1) @(to)} + function and the density matrix operagor
Lbra R A 2. Solution method
(-i/n) J[ st (t)[ St(t‘),p(t)ﬂ at’, In the matrix representation, Eq. (20) takes thenfo
o of a system of ordinary differential equations fle-
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ments of the density matrixpft)>. Matrix realization of
the operatord., K., L., A1, andH- can be selected to bg
the following:

000 010
J,=|0 0 1|,K,=|0 0 0,
000 000
001 10 0
E;ooo,ﬁl:%[oo 0|, (23)
000 00 -
10 0
H,=0 1 o]
30 0 -2

Substitution of (23) in (20) gives
<p11> = _Z(nz N+ Kz +K, )<p11> + 2(62+

(24)
+Kz)<pzz>+2(53+ K)\)<p33>’
<p12>=‘(52+r11+ﬂ2+ﬂ3+Ka +2Kz +K, + (25)
+HUAK, )(pyo)
<p13>=_(61+63+n2+n3+Kz+Kz+2KA+ (26)
+K, + KE)<pl3>’
<F>21>=—(52+ﬂ1+ﬂ2+ﬂ3+Kz+2Kz+KA+ 27)
HUAK, )(0s)

(02) =2(n,+K )Py - 2(8, 40+ K, + 8
+K, )<pzz> + 2(61 +K, )<p33> ;
<p23>=_(61+62+63+n1+2Kz +K + (29)
+K, + (114K +K-)(p,)
<p31>=_(61+63+n2+n3+Kz+Kz+2KA+ (30)
+Kq + Kz)<931>’

<p32>=_(61+62+63+n1+2Kz +K + (31)
+K, + (14K, +K- )(ps)
<p33>=2(n3+KA)<p11>+2(r|1+ KE)<p22>_ (32)

—2(61 +8, +K, + KA)<p33>.

3. Calculation of radiation line shapes

By definition, the radiation line shape of an atom
the transitiori—j is calculated as

g, (6) =Refé (A (9 A(}) (39

where by the angle brackets a two-point correlatio-

tion is denotedA. andA are transition operators betwegn

the levels and.

The two-point correlation function of a creationeop
ator A, and an annihilation operatér can be calculated
by a shift of the initial conditions for the atonsabsys-
tem density matrix [17]:

<A+ (0) A (t)> = <pi - > e_m”t‘p(o)qp(o)i\*(O) ' 34

For example, the correlation function of operatbrand
J. can be written

(3.(0)3.(1) =
-i%zt-j(52+n1+n 2+N g+Kg +2Kg +Ky +£K9]d 1
=Py (to) € ° )

Other correlation functions have similar form.

In the case when the stochastic field is given bigla
ta-correlated process, the integrals of correlafimmc-
tions (22) become

(35)

K, =202 M, )5(t-t)at, = ©7 b,), (36)

wherea = ¢, {, A, Q, andE; c,2 are the variances of corre-
sponding random processeg;are frequencies of exter-
nal influences on the considered system.

Finally, the radiation lines shapes have Lorentzian
form:

1 I
g; (w):?[ " : P (37)
Fij+((o—oqj)
2 2 0_2
r12=61+62+63+n1+2_z+_z+_k+
Ve V.oV,
, , (38)
lo, A o2
+= 2 4=
4v, V-
2 0.2 2
r23:62+n1+n2+n3+_£+2—1+&+
e Ve Y 39
i (39)
J1o
4v,
2 2 0_2
M =0,+8,+N,+N +—+—+22+
¢ Ve h 40
. (40)
406, 0%
Vg Vs

(u_LZ = QO + ((1)0/2), 0)23: (0)0/2), w13= Q 0+ @ 0‘(41)

To obtain radiation lines shapes of the atoms wiita
of its transitions forbidden by the optical selentrules it
is necessary to set in Eq. (38) - (40) equal to #ee con-
stants of the forbidden transition. Further, evérgre,
when considering atomic configurations, fov-atom the
constant$,, n2, ando; have to be taken equal to zero, for
aZ-atom — the constanés, ns, ando,, for aA-atom — the
constant$i, 11, ando:.

In [14] we obtained radiation line shapes for a#dr
level atom interacting with a heat bath and a wstak
chastic field. We used perturbation theory to coeisthe
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impact of the interaction between the atom andstioe
chastic field. Analysis shows that the radiatione$
shapes in [14] equal to the first two terms in &xpan-
sion series of (37) by the stochastic field intgnsi

Fig. 2a and b illustrate the differences between tH
shapes of the radiation line of\aatom on the transition
2—1 obtained by perturbation theory in [14] and
Eq. (37). The following values of parameters aredus
Qo/mozz, 61/0)0:0.5, 62/0)0:0, 6&0)020.5, 111/0)0:0.5,
N2Awo=0, Nz/we=0.5, co/wo=0.1, o=/wp=0.1, wolva=1,
wolv==1, wo/ve=0.7, wolv¢=0, wo/v,=0.7, o/wo=0. The
stochastic field intensity is varied by parameterando.

10

6)-10 -5 0 5
Fig. 2. Shapes of the radiation line of a V-atontt@ntransition
2—1 for the values of the delta-correlated processnisity:
odwo= 0.4 ando/wo= 0.4 (a),0dwo= 0.7 ando;/wo= 0.7 (b). The
line 1 denotes the radiation line shape when #id f§ absent, the
line 2 — the radiation line shape obtained by peration theory
in [14], the line 3 — the radiation line shape giMey (37)

In the case when the stochastic field can be reptes
ed by a Kubo-Anderson process, Eq. (22) takesadim f
t
K, = [oze™(™dt,, (42)
fo

where notation (41) is used.

__,, O 9. O
AWy = -0, —+ 200, 7 TWi—5 (45)
Ve Z A
2 2 2
(0} (0} o
— g g A
e A(*)B - (*)12 2 + (*)23 2 + 2(*)13 21 (46)
€ 14 A

)ywhere notation (41) for the transition frequendégessed.

In Fig. 3a andb, we show the differences between the
shapes of the radiation line of\datom on the transition
2—1 given by Eq. (43) and obtained in [14]. Here, fihle
lowing values of parameters are uskgtoo = 2, 81/wo = 0.5,
82/(00 = 0, 8#(0() = 0.5, 111/(,00 = 0.5, 1]2/(,00 = 0, 1]3/(00 = 0.5,
calwo=0.1, o=/wp=0.1, widva=0.1, wov==0.1,
wolve = 0.1, wolve = 0, wofvr. = 0.1, o/ = 0. Parameters:
ando). specify the intensity of the stochastic field.

gi2(o)
0.15

a)-10

0)-10 -5 0 5 10
Fig. 3. Shapes of the radiation line of a V-atontt@ntransition
2—1 for the values of the Kubo-Anderson processsitien
odwo= 2 andoi/wo= 2 (a),0dwo= 1 andsi/wo= 1 (b). The line 1
denotes the radiation line shape when the fietddb&ent, the line 2
— the radiation line shape obtained by perturbatiogory in [14],

the line 3 — the radiation line shape given by (43)

The proposed method of averaging of specific raaliz
tions of the random process@ft), E(t), &(t), {(t), andA(t)
leads to a zero contribution from the first termthe right
part of (11) into the final expression for the reagtquation

When the frequencies of collisions are sufficienfly(20), which describes only relaxation processethiéncon-

high, i.e. maxXo.?/v,?)<<1 and (x+Qo)/ max(vy) <<1,
contours of the radiation lines are Lorentzian

2
o (@) =@/m, /17 +(0-(o) +a ) D, (43)
whereTl’; are given by the same expressions as in the

of a delta-correlated process (38) — (40),are defined
by (41),Aw; represents a shift of the central peak

cow % Tt O
AWy, =200, — ~ Wyt Wy, (44)

g 4 A

Lase

sidered case. The external stochastic field akésdi heat
bath, which is reflected in Eq. (20). Here, thestants de-
scribing the photon heat bath and the correlatiootfons of
the stochastic fields are included in the same way.

This leads to the situation when the equationgHer
diagonal density matrix elements (24), (28), (3&nf a
closed system, and the equations for the non-dagen
ements are decoupled. As a result, the radiatinesli
shapes for a delta-correlated process (37) and lmoKu
Anderson process (43) are Lorentzian.
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The finiteness of the correlation time for a Kub)
Anderson process lead to a shift of the centerrafi@tion
line shape byAwj;, which is dependent on the resonance f
guencies of atomic transitions and parameterseostthchas-
tic field. Numeric modeling of the obtained restiisradia-
tion line shapes and comparing them with the redudim
[14], derived with help of perturbation theory, shthat the
radiation line shapes are in good agreement iarthee of va-
lidity of the perturbation theory. Increasing oé tstochastic
fields intensity lead to growing difference betweha Lo-
rentzian line shapes (37) and (43) and the radidiize
shapes from [14], the emergence of a valley (Fiy.ahd
significant deformation (Fig.1.

Conclusion

In the present paper, the efficiency of the metbbd
averaging over stochastic fields realizations at stage
of deriving of the master equation is showed. Tlethod
is used for describing relaxation of a QDS intarart
with a photon heat bath and an external stochéistit,
which can model the stochastic character of theldip
dipole interaction between the QDS and the envirmm
or a fluctuating component of the broadband laadiar
tion. The exact solutions are obtained. A deltaelated
process and a Kubo-Anderson process are examimxed
plicit expressions for radiation lines shapes, aiming
parameters of the stochastic processes, are detived
showed that the radiation lines shapes are LomtEor
the Kubo-Anderson process an explicit expressionafg
shift of the center of the Lorentzian contour igamfed.
The presented approach allows to define the tiriéme
gitudinal (T1) and transverseT§) relaxation of a three-
level atom in a stochastic field and also to fihd tela-
tionship betwee; andT.. It will be the subject of our
further research.
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