Generalized projective morphology
Y.V. Vizilter

State Research Institute of Aviation Systems

Full text of article: Russian language.

The description of proposed generalized projective morphology is given. Algebraic basis of projective morphology is considered. Formal and criteria-based schemes for morphology design are described. Some sufficient conditions of projectiveness for criteria-based morphological operators are proved. Projectors are proposed and explored based on: minimal distance (maximal similarity) criterion, maximal norm of projection, predicate-type criterions, feature vectors, parametric models and dynamic programming procedures. The class of criteria-based morphologies based on structural interpolation operators is proposed.

Key words:
Mathematical Morphology, Image Processing, Image Analysis.

Citation: Vizilter YuV. Generalized Projective Morphology. Computer Optics 2008; 32(4): 384-99.


  1. Vizilter YuV, Zheltov SYu. Comparison and localization of image elements using projective morphology [In Russian].  Vestnik Komp'iuternykh i Informatsionnykh Tekhnologii (Herald of Computer and Information Technologies) 2008; 2: 14-22.
  2. Pavel M. Fundamentals of Pattern Recognition. Marcel Dekker. Inc. New York 1989.
  3. Serra J. Image Analysis and Mathematical Morphology. Academic Press, London 1982.
  4. Pytiev YuP. Morphological image analysis [In Russian]. Doklady AN SSSR (Proceedings of the Academy of Sciences of the USSR) 1983; 269(5): 1061-1064.
  5. Bratko I. Prolog programming for artificial intelligence [In Russian]. Moscow: “Mir” Publisher 1990; 560 p.
  6. Hogger K. Introduction to logic programming [In Russian]. Moscow: “Mir” Publisher 1988; 348 p.
  7. Berge V. Methods of recursive programming [In Russian]. Moscow: “Mashinostroenie” (Mechanical Engineering) Publisher 1983; 248 p.
  8. Werner T. A Linear Programming Approach to Max-sum problem: A Review. Research reports of CMP. Czech Technical University in Prague 2005; 25: 46.
  9. Geman S, Geman D. Stochastic relaxation, Gibbs distributions, the Bayesian restoration of images. IEEE Trans. Pattern Analysis, Machine Intelligence 1984; 6: 721-741.
  10. Forsyth D, Ponce J. Computer vision: a modern approach [In Russian]. Moscow: “Williams” Publisher 2004; 928 p.
  11. Mottl V, Blinov A, Kopylov A, Kostin A. Optimization techniques on pixel neighborhood graphs for image processing. Graph-Based Representations in Pattern Recognition. J.-M. Jolion and W.G. Kropatsch, ed. Computing, Supplement 12. Springer-Verlag/Wien 1998: 135-145.
  12. Yeong-Chyang Shih F, Mitchell O.R. Threshold Decomposition of gray Scale Morphology into Binary Morphology. IEEE trans. on pattern analysis, machine intelligence.  January 1989; II(1).

© 2009, ИСОИ РАН
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ; тел: +7 (846) 332-56-22, факс: +7 (846 2) 332-56-20