Transforming of slowing laser beams to accelerating beams
A.A. Kovalev
, V.V. Kotlyar, S.G. Zaskanov

Full text of article: Russian language.

Abstract:
We propose a method of obtaining solution of the paraxial Helmholtz equation which describes two-dimensional light beams accelerating on a finite interval of the trajectory. Method based on complex conjugation and shift along the longitudinal coordinate (parallel to the optical axis) of the complex amplitude of the slowing light beams. Using this method we obtained Fresnel and Laplace beams, as well as "half-Bessel" beams, accelerating along the trajectory in a form of square root. It has been observed that the well-known Hermite-Gaussian light beams are also accelerating beams with a hyperbolic trajectory. In contrast to well-known diffraction-free accelerating Airy beams all beams, which we consider, are converging upon propagation.

Key words:
accelerating laser beam, beam trajectory, Fresnel beam, Laplace beam.

References:

  1. Bandres, M.A. Nondiffracting accelerating waves: Weber waves and parabolic momentum / M.A. Bandres, B.M. Ro­diguez-Lara // New Journal of Physics. – 2013. – V. 15. – P. 013054.
  2. Kaminer, I. Nondiffracting accelerating wave packets of maxwell's equations / I. Kaminer, R. Bekenstein, J. Nemi­rov­sky, M. Segev // Phys. Rev. Lett. – 2012. – V. 108. – P. 163901.
  3. Torre, A. A note on the general solution of the paraxial wave equation: a Lie algebra view / A. Torre // J. Opt. A: Pure Appl. Opt. – 2008. – V. 10. – P. 055006.
  4. Bandres, M.A. Three-dimensional accelerating electromag­netic waves / M.A. Bandres, M.A. Alonso, I. Kaminer, M. Se­gev // Opt. Express – 2013. – V. 21(12). – P. 13917-13929.
  5. Kotlyar, V.V. Airy beam with a hyperbolic trajectory / V.V. Kotlyar, A.A. Kovalev // Opt. Commun. – 2014. – V. 313. – P. 290-293.
  6. Siviloglou, G.A. Accelerating finite energy Airy beams / G.A. Siviloglou, D.N. Christodoulides // Opt. Lett. – 2007. – V. 32. – P. 979-981.
  7. Kotlyar, V.V. Curved laser microjet in near field / V.V. Kotlyar, S.S. Stafeev, A.A. Kovalev // Appl. Opt. – 2013. – V. 52(18). – P. 4131-4136.
  8. Born, M. Principles of Optics / M. Born, E. Wolf. – 6 ed. – Pergamon, 1986.
  9. Handbook of Mathematical Functions / edited by M. Ab­ramowitz, I.A. Stegun. – Washington: National Bureau of Standards, DC, 1964. – 1044 p.
  10. Kogelnik, H. Laser beams and resonators / H. Kogelnik, T. Li // Proc. IEEE – 1966. – V. 54. – P. 1312-1329.
  11. Kotlyar, V.V. Orbital angular momentum of superposition of two generalized Hermite-Gaussian laser beams / V.V. Kotlyar, A.A. Kovalev // Computer Optics. – 2013. – V. 37(2). – P. 179-185.
  12. Kotlyar, V.V. Propagation of hypergeometric laser beams in a medium with the parabolic refractive index / V.V. Kotlyar, A.A. Kovalev, A.G. Nalimov // J. Opt. – 2013. – V. 313. – P. 290-293.
  13. Kotlyar, V.V. Family of hypergeometric laser beams / V.V. Kotlyar, A.A. Kovalev // J. Opt. Soc. Am. A. – 2008. – V. 25(1). – P. 262-270.
  14. Papazoglou, D.G. Observation of abruptly autofocusing waves / D.G. Papazoglou, N.K. Efremidis, D.N. Christodou­lides, S. Tzortakis // Opt. Lett. – 2011. – V. 32(10). – P. 1842-1844.
  15. Prudnikov, A.P. Integrals and series. Special functions / A.P. Prudnikov, J.A. Brychkov, O.I. Marichev. – Moscow: “Science” Publisher, 1983. – (In Russian).

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; e-mail: ko@smr.ru; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20