Theoretical and an experimental research of polarizing transformations in uniaxial crystals for generation cylindrical vector beams of high orders
S.N. Khonina
, S.V. Karpeev, S.V. Alferov

Full text of article: Russian language.

Abstract:
We analytically and numerically investigate formation of cylindrical vector beams by birefringent crystal in accordance with two schemes: with one combined focus, and with two focuses. In the case with two focuses at presence of a vortical phase in incident beam with circular polarization in one of focuses the radially-polarized distribution is generated, and in another - azimuthally-polarized. The results are generalized on a case of formation radially- and zimuthally-polarized laser beams of the higher orders. Experiments with a crystal of Icelandic spar confirm results of simulations.

Key words:
uniaxial crystal, cylindrical vector beams, laser modes of the high order.

References:

  1. Zhan, Q. Cylindrical vector beams: from mathematical concepts to applications // Advances in Optics and Photonics. – 2009. – V. 1. – P. 1-57.
  2. Oron, R. The formation of laser beams with pure azimuthal or radial polarization / R. Oron, S. Blit, N. Davidson and A.A. Friesem // Applied Physics Letters. – 2000. – V. 77, Issue 21. – P. 3322-3324.
  3. Machavariani, G. Birefringence-induced bifocusing for selection of radially or azimuthally polarized laser modes / G. Machavariani, Y. Lumer, I. Moshe, A. Meir, S. Jackel, and N. Davidson // Applied Optics. – 2007. – V. 46. – P. 3304-3310.
  4. Yonezawa, K. Compact laser with radial polarization using birefringent laser medium / K. Yonezawa, Y. Kozawa and S. Sato // Japanese Journal of Applied Physics. – 2007. – V. 46. – P. 5160-5163.
  5. Khonina, S.N. Generating inhomogeneously polarized higher-order laser beams by use of DOEs beams / S.N. Khonina, S.V. Karpeev // Journal of the Optical Society of America A. – 2011. – V. 28(10). – P. 2115-2123.
  6. Khonina, S.N. Polarization converter for higher-order laser beams using a single binary diffractive optical element as beam splitter / S.N. Khonina, S.V. Karpeev, S.V. Alferov // Optics Letters. – 2012. – V. 37(12). – P. 2385-2387.
  7. Khonina, S.N. Grating-based optical scheme for the universal generation of inhomogeneously polarized laser beams / S.N. Khonina, S.V. Karpeev // Applied Optics. – 2010. – V. 49(10). – P. 1734-1738.
  8. Fadeyeva, T. Natural shaping of the cylindrically polarized beams / T. Fadeyeva, V. Shvedov, N. Shostka, C. Ale­xeyev and A. Volyar // Optics Letters. – 2010. – V. 35(22). – P. 3787-3789.
  9. Venkatakrishnan, K. Generation of radially polarized  beam  for laser micromachining / K. Venkatakrishnan and B. Tan // Journal of Laser Micro/Nanoengineering. – 2012. – V. 7(3). – P. 274-278.
  10. Loussert, C. Efficient scalar and vectorial singular beam shaping using homogeneous anisotropic media / C. Lous­sert and E. Brasselet // Optics Letters. – 2010. – V. 35. – P. 7-9.
  11. Fadeyeva, T.A. Spatially engineered polarization states and optical vortices in uniaxial crystals / T.A. Fadeyeva, V.G. Shve­dov, Y.V. Izdebskaya, A.V. Volyar, E. Brasselet, D.N. Ne­shev, A.S. Desyatnikov, W. Krolikowski and Y.S. Kiv­shar // Optics Express. – 2010. – V. 18(10). – P. 10848-10863.
  12. Khonina, S.N. Strengthening the longitudinal component of the sharply focused electric field by means of higher-order laser beams / S.N. Khonina, S.V. Karpeev, S.V. Alferov // Optics Letters. – 2013. – V. 38(17). – P. 3223-3226.
  13. Khonina, S.N. Experimental demonstration of the generation of the longitudinal E-field component on the optical axis with high-numerical-aperture binary axicons illuminated by linearly and circularly polarized beams / S.N. Kho­nina, S.V. Karpeev, S.V. Alferov, D.A. Savelyev, J. Laukkanen, J. Turunen // Journal of Optics. – 2013. – V. 15. – P. 085704 (9 p).
  14. Alferov, S.V. Study of polarization properties of fiber-optics probes with use of a binary phase plate / S.V. Alfe­rov, S.N. Khonina and S.V. Karpeev // Journal of the Optical Society of America A. – 2014. – V. 31(4). – P. 802-807.
  15. Alferov, S.V. Experimental study of focusing of inhomogeneously polarized beams generated using sector polarizing plates / S.V. Alferov, S.V. Karpeev, S.N. Khonina, O.Yu. Moi­seev // Computer Optics. – 2014. – V. 38(1). – P. 57-64.
  16. Methods for Computer Design of Diffractive Optical Elements / V.A. Soifer, V.V. Kotlyar, N.L. Kazanskiy, L.L. Do­skolovich, S.I. Kharitonov, S.N. Khonina, V.S. Pavelyev, R.V. Skidanov, A.V. Volkov, D.L. Golovashkin, V.S. Solo­vyev, G.V. Usplenyev; ed. by V.A. Soifer. – New York: John Wiley & Sons, Inc., 2002. – 765 p.
  17. Computer Design of Diffractive Optics / D.L. Golovashkin, V.V. Kotlyar, V.A. Soifer, L.L. Doskolovich, N.L. Kazan­skiy, V.S. Pavelyev, S.N. Khonina, R.V. Skidanov; ed. by V.A. Soifer. – Cambridge: Woodhead Publishing Limited, 2012. – 896 p.
  18. Khonina, S.N. Periodic intensity change for laser mode beams propagation in anisotropic unaxial crystals / S.N. Khonina, S.G. Volotovsky, S.I. Kharitonov // Izvestiya SNC RAS. – 2012. – V. 14(4). – P. 18-27. – (In Russian).
  19. Zhan, Q. Focus shaping using cylindrical vector beams / Q. Zhan, J.R. Leger // Optics Express. – 2002. – V. 10, Issue 7. – P. 324-331.
  20. Hao, B. Numerical aperture invariant focus shaping using spirally polarized beams / B. Hao, J. Leger // Optics Com-munications. – 2008. – V. 281. – P. 1924-1928.
  21. Karpeev, S.V. Forming inhomogeneously polarized higher-order laser beams on the basis of circulary polarised beams / S.V. Karpeev, S.N. Khonina, N.L. Kazanskiy, .Yu. Moi­seev // Computer Optics. – 2011. – V. 35(2). – P. 224-230. – (In Russian).
  22. Khonina, S.N. Encoded binary diffractive element to form hyper-geometric laser beams / S.N. Khonina, S.A. Balalay­ev, R.V. Skidanov, V.V. Kotlyar, B. Paivanranta, J. Turu­nen // Journal of Optics A: Pure and Applied Optics. – 2009. – V. 11. – P. 065702 (7 p).
  23. Kazanskiy, N.L. Research & education center of diffractive optics // Proceedings of SPIE. – 2012. – V. 8410. – P. 84100R. – DOI: 10.1117/12.923233.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; e-mail: ko@smr.ru; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20