Analysis of laser beam diffraction by axicon with the numerical aperture above limiting
A.V. Ustinov, S.N. Khonina

Full text of article: Russian language.

Abstract:
The theoretical analysis of plane wave diffraction by axicon in the zone of evanescent waves is executed. The received analytical estimations are qualitatively in accordance with results of numerical calculations in nonparaxial scalar wave model.

Key words:
axicon, limiting numerical aperture, evanescent waves.

References:

  1. McLeod, J.H. The axicon: a new type of optical element / J.H. McLeod // Journal of the Optical Society of America. – 1954. – V. 44. – P. 592-597.
  2. Durnin, J. Diffraction-free beams / J. Durnin, J.J. Miceli, Jr. and J.H. Eberly // Physical Review Letters. – 1987. – V. 58. – P. 1499-1501.
  3. McGloin, D. Bessel beams: diffraction in a new light / D. McGloin and K. Dholakia // Contemporary Physics. – 2005. – V. 46(1). – P. 15-28.
  4. Jaroszewicz, Z. Axicon – the most important optical element / Z. Jaroszewicz, A. Burvall, A.T. Friberg // Optics & Photonics News, April 2005.
  5. Arlt, J. Optical micromanipulation using a Bessel light beam / J. Arlt, V. Garces-Chavez, W. Sibbett and K. Dho­lakia // Optics Communications. – 2001. – V. 197. – P. 239-245.
  6. Garces-Chavez, V. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam / V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett and K. Dholakia // Nature. – 2002. – V. 419. – P. 145-147.
  7. Soifer, V.A. Optical microparticle manipulation: advances and new possibilities created by diffractive optics / V.A. Soifer, V.V. Kotlyar, S.N. Khonina // Physics of Particles and Nuclei. – 2004. – Vol. 35 (6), P. 733–766.
  8. Ding, Z. High-resolution optical coherence tomography over a large depth range with an axicon lens / Z. Ding, H. Ren, Y. Zhao, J.S. Nelson and Z. Chen // Optics Letters. – 2002. – V. 27. – P. 243-245.
  9. Lee, K. Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range / K. Lee and J. Rolland // Optics Letters. – 2008. – V. 33. – P. 1696-1698.
  10. Kotlyar, V.V. Contactless precision measurement of a linear displacement using DOEs forming Bessel beams / V.V. Kotlyar, R.V. Skidanov and S.N. Khonina // Computer Optics. – 2001. – V. 21. – P. 102-104. – (In Russian).
  11. Fortin, M. Optical tests with Bessel beam interferometry / M. Fortin, M. Piché and E.F. Borra // Optics Express. –2004. – V. 2, Issue 24. – P. 5887-5895.
  12. Turunen, J. Holographic generation of diffraction-free beams / J. Turunen, A. Vasara and A.T. Friberg // Applied Optics. – 1988. – V. 27. – P. 3959-3962.
  13. Arlt, J. Optical dipole traps and atomic waveguides based on Bessel light beams / J. Arlt [et al.] // Physical Review. – 2001. – V. 63. – P. 063602.
  14. Cizmar, T. An optical nanotrap array movable over a milimetre range / T. Cizmar, M. Siler, P. Zemanek // Applied Physics B. – 2006. – V. 84. – P. 197-203.
  15. Khonina, S.N. Narrowing of a light spot at diffraction of linearly-polarized beam on binary asymmetric axicons / S.N. Khonina, D.V. Nesterenko, A.A.Morozov, R.V. Skidanov, V.A. Soifer // Optical Memory and Neural Networks (Information Optics). –2012. – V. 21(1). – P. 17-26.
  16. Khonina, S.N. Experimental demonstration of the generation of the longitudinal E-field component on the optical axis with high-numerical-aperture binary axicons illuminated by linearly and circularly polarized beams / S.N. Khonina, S.V. Karpeev, S.V. Alferov, D.A. Savelyev, J. Laukkanen, J. Turunen // Journal of Optics. – 2013. – V. 15. – P. 085704 (9 p).
  17. Vahimaa, P. Electromagnetic analysis of nonparaxial Bessel beams generated by diffractive axicons / Pasi Vahimaa, Ville Kettunen, Markku Kuittinen, Jari Turunen and Ari T. Friberg // Journal of the Optical Society of America A. – 1997. – V. 14(8). – P. 1817-1824.
  18. Zhang, Y. Vector propagation of radially polarized Gaussian beams diffracted by an axicon / Y. Zhang, L. Wang, C. Zheng // Journal of the Optical Society of America A. – 2005. – V. 22(11). – P. 2542-2546.
  19. Kotlyar, V.V. Modeling sharp focus radially-polarized laser mode with conical and binary microaxicons / V.V. Kotlyar, S.S. Stafeev // Computer Optics. – 2009. – V. 33(1). – P. 52-60. – (In Russian).
  20. Khonina, S.N. Diffraction at binary microaxicons in the near field / S.N. Khonina, P.G. Serafimovich, D.A. Savelyev, I.A. Pustovoi // Journal of Optical Technology. – 2012. – V. 79(10). – P. 626-631.
  21. Totzeck, M. Validity of the scalar Kirchhoff and Rayleigh-Sommerfeld diffraction theories in the near field of small phase objects // Journal of the Optical Society of America A. – 1991. – V. 8(1). – P. 27-32.
  22. Tsoy, V.I. The use of Kirchho? approach for the calculation of the near ?eld amplitudes of electromagnetic ?eld / V.I. Tsoy, L.A. Melnikov // Optics Communications. – 2005. – V. 256. – P. 1-9.
  23. Ustinov, A.V. Generalized lens: Calculation of distribution on the optical axis / A.V. Ustinov, S.N. Khonina // Computer Optics. – 2013. – V. 37(3). – P. 307-315.
  24. Khonina, S.N. Propagation of the radially-limited vortical beam in a near zone. Part I. Calculation algorithms / S.N. Khonina, A.V. Ustinov, A.A. Kovalev, S.G. Volotovsky // Computer Optics. – 2010. – V. 34, No. 3. – P. 317-332. – (In Russian).
  25. Khonina, S.N. Diffraction at binary microaxicons in the near field / S.N. Khonina, P.G. Serafimovich, D.A. Savelyev, I.A. Pustovoi // Journal of Optical Technology. – 2012. – . 79,  10. – P. 626-631.
  26. Ustinov, A.V. Calculating the complex transmission function of refractive axicons / A.V. Ustinov and S.N. Khonina // Optical Memory and Neural Networks (Information Optics). – 2012. – V. 21(3). – P. 133-144.
  27. Born, M. Principles of Optics / M. Born, E. Wolf – 6th ed. – Oxford: Pergamon, 1980. – Chap. 8.3.
  28. Ustinov, A.V. Analysis of flat beam diffraction by divergent fracxicon in nonparaxial mode / A.V. Ustinov, S.N. Khonina, // Computer Optics. – 2014. – V. 38(1). – P. 42-50.
  29. Ditkin, V.A. Integral transforms and operational calculus / V.A. Ditkin and A.P. Prudnikov. – oscow: "Fizmatlit" Publisher, 1961. – Charters VII, VIII. – (In Russian).
  30. Ustinov, A.V. Comparative analysis of parabolic lens and axicon in geometric and scalar paraxial optical models / A.V. Ustinov, A.V. Karsakov, S.N. Khonina // Bulletin SSAU. – 2012. –  4(35). – C. 230-239.
  31. Khonina, S.N. Controlling the contribution of the electric ?eld components to the focus of a high-aperture lens using binary phase structures / S.N. Khonina, S.G. Volotovsky // Journal of the Optical Society of America A. – 2010. – V. 27(10). – P. 2188-2197.
  32. Huse, N. Z-polarized confocal microscopy / N. Huse, A. Schonle, S.W. Hell // Journal of Biomedical Optics. – 2001. – V. 6. – P. 273–276.
  33. Grosjean, T. Photopolymers as vectorial sensors of the electric field / T. Grosjean and D. Courjon // Optics Express. – 2006. – V. 14. – P. 2203–2210.
  34. Dedecker, P. Orientational effects in the excitation and de-excitation of single molecules interacting with donut-mode laser beams / P. Dedecker, B. Muls, J. Hofkens, J. Enderlein, and J.-I. Hotta // Optics Express – 2007. – V. 15. – P. 3372–3383.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; e-mail: ko@smr.ru; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20