Estimating the geometric features of a 3d vascular structure
N.Yu. Ilyasova

Image Processing Systems Institute, Russian Academy of Sciences,
Samara State Aerospace University

Full text of article: Russian language.

Abstract:
Methods and algorithms for estimating the geometric features of 2D and 3D tree-like structures are proposed. The methods have major application areas in biomedical problems associated with the analysis and measurement of vascular system peculiarities: 2D eye-retina structure and 3D cardiovascular system. The immunity of the estimation methods to different types of noise and the feasibility of the feature-based clustering of vessel samplings are experimentally studied.

Key words:
human vascular system, geometric features.

References:

  1. Teng, T. Progress towards automated diabetic ocular screening: a review of image analysis and intelligent systems for diabetic retinopathy / T. Teng, D. Claremont, M. Lefley // Medical & Biological Engineering & Computing. – 2002. – Vol. 40(1). – P. 2-13.
  2. Foracchia, M. Extraction and quantitative description of vessel features in hypertensive retinopathy fundus images / M. Forac­chia // Book Abstracts / 2nd International Workshop on Computer Assisted Fundus Image Analysis. – 2001. – P. 6.
  3. Hiroki, M. Tortuosity of the white matter medullary arterioles is related to the severity of hypertension / M. Hiroki, K. Miyashita, M. Oda // Cerebrovascular Diseases. – 2002. – Vol. 13(4). – P. 242-250.
  4. Bribiesca, E. A measure of tortuosity based on chain coding // Pattern Recognition. – 2013. – Vol. 46, Issue 3. – P. 716-724.
  5. Cheung, C.Y. Retinal Vascular Tortuosity, Blood Pressure, and Cardiovascular Risk / C.Y. Cheung, Y. Zheng, W. Hsu, M.L. Lee, Q.P. Lau, P. Mitchell, J.J. Wang, R. Klein, T.Y. Wong // Ophthalmology. – 2011. – Vol. 118(5). – P. 812-818.
  6. Martin Rodriguez, Z. Improved characterisation of aortic tortuosity / Z. Martin Rodriguez, P. Kenny, L. Gaynor // Medical Engineering & Physics. – 2011. – Vol. 33(6). – P. 712-719.
  7. Bullitt, E. Analyzing attributes of vessel populations / E. Bullitt, K.E. Muller, I. Jung, W. Lin, S. Aylward // Medical Image Analysis.– 2005. – Vol. 9(1). – P. 39-49.
  8. Sasongko, M.B. Alterations in retinal microvascular geometry in young type 1 diabetes / J.J. Wang, K.C. Donaghue, N. Che­ung, A.J. Jenkins, P. Benitez-Aguirre, J.J. Wang // Diabetes Care. – 2010. – Vol. 33(6). – P. 1331-1336.
  9. Johnson, M.J. Robust measures of three-dimensional vascular tortuosity based on the minimum curvature of approximating polynomial spline fits to the vessel mid-line / M.J. Johnson, G. Dougherty // Medical Engineering & Physics. – 2007. – Vol. 29(6). – P. 677-690.
  10. Ilyasova, N.Yu. Methods for digital analysis of human vascular system. Literature review // Computer Optics. – 2013. – Vol. 37(4). – P. 517-541. – ISSN 0134-2452.
  11. Ilyasova, N.Yu. Biomechanical characteristics of blood vessels for digital image analysis fundus / N.Yu. Ilyasova, A.V. Ku­priyanov, N.A. Gavrilova, G.A. Shilkin, N.I. La­nevskaya // Biomehanika Glaza. – 2002. – P. 18-30. – (In Russian).
  12. Smedby, O. Two-dimensional tortuosity of the superficial femoral artery in early atherosclerosis / O. Smedby, N. Högman, S. Nilsson, U. Erikson, A.G. Olsson, G. Walldius // Journal of Vascular Research.– 1993. – Vol. 30(4). – P. 181-191.
  13. Abramoff, M. Web-based screening for diabetic retinopathy in a primary care population: The eye check project / M. Abramoff, M. Suttorp // Telemedicine and e-Health. – 2005. – Vol. 11(6). – P. 668-674.
  14. Pai, R. Automated Diagnosis of Retinal Images Using Evidential Reasoning / R. Pai, A. Hoover, M. Goldbaum. – International Conference on SENG, 2002.
  15. Ilyasova, N.Yu. Measuring Biomechanical Characteristics of Blood Vessels for Early Diagnostics of Vascular Retinal Pathologies / N.Yu. Ilyasova, M.A. Ananin, N.A. Gavrilova, A.V. Kupriyanov // Lecture Notes in Computer Science. Medical Image Computing and Computer Assisted Intervention, MICCAI 2004, Proceedings of 7th International, Conference Saint-Malo, France, 2004, September. – Vol. 3217, Issue 1. – Part II. – P. 251-258.
  16. Ilyasova, N.Yu. Computer technology for the spatial reconstruction of the coronary vesels structure from angiographic projections / N.Yu. Ilyasova, N.L. Kazanskiy, .. Ko­repanov, A.V. Kupriyanov, .V. Ustinov, .G. Khramov // Computer Optics. – 2009. – Vol. 33,  3. – P. 281-318. – (In Russian).
  17. Ilyasova, N.Yu. An Expert Computer System for Diagnosing Eye Diseases from Retina Images / N.Yu. Ilyasova, A.V. Ustinov, V.G. Baranov // Optical Memory and Neural Networks. – 2000. –Vol. 9, Issue 2. – P. 133-145.
  18. Ilyasova, N.Yu. Diagnostic computer complex for vascular fundus image analysis // Biotehnosfera. – 2014. – Vol. 3(33) – . 20-24. – (In Russian).
  19. Soifer, V.A. Methods for Computer Diagnostics using Eye’s Fundus Images / V.A. Soifer, N.Yu. Ilyasova, A.V. Kupriy­anov, A.G. Khramov, M.A. Ananin // Technologies of the Living Systems. – Radiotechnika. – 2008. – V. 5, N 5-6. – P. 61-71. – (In Russian).
  20. Ilyasova, N. A Method of the Wavelet Transformation for Estimation of Geometrical Parameters upon the Diagnostic Images / N. Ilyasova, A.O. Korepanov, A. Kupriyanov // Optical Memory & Neural Networks (Information Optics). – 2009. – Vol. 18, Issue 4. – P. 343-348.
  21. Kupriyanov, A.V. Estimation of the geometrical parameters of the optic disk region in the eye fundus images / A.V. Kupriyanov, N.Yu. Ilyasova, M.A. Ananin, A.M. Ma­lapheev, A.V. Ustinov // Computer Optics. – 2005. – Vol. 28. – P. 136-139. – (In Russian).
  22. Ilyasova, N.Yu. Information technologies of image analysis in medical diagnostics / N.Yu. Ilyasova, A.V. Kupriyanov, A.G. Khramov. – Moscow: “Radio and communication” Publisher, 2012. – 424 p. – ISBN 5-89776-014-4. – (In Russian).
  23. Kupriyanov, A.V. Development of the information technology for estimation of fundus image geometric parameters / A.V. Kupriyanov, N.Yu. Ilyasova // Bulletin of the Samara State Aerospace University. – 2008. – Vol. 2(15). – P. 221-235. – (In Russian).
  24. Ilyasova, N.Yu. Methods for formation of features of tree-like structures on fundus images / N.Yu. Ilyasova, V.V. Yatul’chik // Pattern Recognition and Image Analysis. Advances in Mathematical Theory and Applications. – 2006. – Vol. 16, Issue 1. – P. 124-127.
  25. Ilyasova, N.Yu. Measurement of the biomechanical vessels parameter for the diagnostics of the early stages of the retina vascular pathology / N.Yu. Ilyasova, A.V. Kupriyanov, M.A. Ananin // Computer Optics. – 2005. – Vol. 27. – P. 165-170. – (In Russian).
  26. Anan’in, M.A. A method for estimating morphological parameters of vessels in fundus images based on curve visibility matrix / M.A. Anan’in, N. Yu. Ilyasova // Bulletin of the Samara State Aerospace University. – 2008. – Vol. 2(15). – P. 258-260. – (In Russian).
  27. Computer Image Processing, Part II: Methods and algorithms: Appendix A2. Biomedical Images Processing / N.Yu. Ilyasova, A.V. Kupriyanov A.G. Khramov, A.O. Ko­repanov. – Ed. by Victor A. Soifer. – VDM Verlag, 2009. – 584 p.
  28. Anan’in, M.A. Estimating Directions of Optic Disk Blood Vessels in Retinal Images / M.A. Anan’in, N.Yu. Ilyasova, A.V. Kupriyanov // Pattern Recognition and Image Analysis. Advances in Mathematical Theory and Applications. – 2007. – Vol. 17, Issue 4. – P. 523-526.
  29. Kupriyanov, A.V. Geometrical Parameters Estimation of the Retina Images for Blood Vessels Pathology Diagnostics / A.V. Ku­priyanov, N.Yu. Ilyasova, M.A. Ananin // Proceedings of 15th European Signal Processing Conference September 3-7 2007, EUSIPCO 2007, Poznan, Poland. – 2007. – P. 1251-1254.
  30. Soltanian-Zadeh, H. 3-D quantification and visualization of vascular structures from confocal microscopic images using skeletonization and voxel-coding / H. Soltanian-Zadeh, A. Shah­ro­kni // Computers in Biology and Medicine 35. – 2005. – P. 791-813.
  31. Abdul-Karim, M. K. Al-Kofahi. Automated tracing and change analysis of angiogenic vasculature from in vivo multiphoton confocal image time series/ M. Abdul-Karim, K. Al-Kofahi // Microvascular Research 66. – 2003. – P. 113-125.
  32. Tyrrell, J.A. 2 -D/3-D model-based method to quantify the complexity of microvasculature imaged by in vivo multiphoton microscopy/ J.A. Tyrrell, V.A. Mahadevan // Microvascular Research 70. – 2005. – P. 165-178.
  33. Metzen, J.H. Matching of anatomical tree structures for registration of medical images / J.H. Metzen, T. Kröger, A. Schenk [et al.] // Image and Vision Computing. – 2009. – Vol. 27. – P. 923-933.
  34. Lesage, D. A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes / D. Lesage, E.D. Angelini, I. Bloch, G. Funka-Lea // Medical Image Analysis. – 2009. – Vol. 13. – P. 819-845.
  35. Heimann, T. Statistical shape models for 3D medical image segmentation: A review / T. Heimann, H.P. Meinzer // Medical Image Analysis. – 2009. – Vol. 13. – P. 543-563.
  36. Demidovich, B.P. Foundations of computational mathematics / B.P. Demidovich, I.. Maron. – oscow: "Nauka" Publisher, 1966. – 664 p. – (In Russian).
  37. Methods of Computer Image Processing / M.V. Gashnikov, N.I. Glumov, N.Yu. Iluasova, V.V. Myasnicov, S.B. Popov, V.V. Sergeev, V.A. Soifer, A.G. Khramov, A.V. Chernov, V.M. Chernov, M.A. Chicheva, V.A. Fursov. – Ed. by V.A. Soifer. – Sec. Ed. – oscow: "Fizmatlit" Publisher, 2003. – 780 p. – (In Russian).
  38. MacQueen, J. Some methods for classification and analysis of multivariate observations / J. MacQueen // Proceedings of 5th Berkeley Symp. on Math. Statistics and Probability. – 1967. – P. 281-297.
    © 2009, IPSI RAS
    Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; e-mail: ko@smr.ru; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20