Sharp focusing of linearly polarized asymmetric Bessel beam
Kotlyar V.V.
, Stafeev S.S., Porfirev A.P.

 

Image Processing Systems Institute, Russian Academy of Sciences,
Samara State Aerospace University

 

DOI: 10.18287/0134-2452-2015-39-1-36-44

Full text of article: Russian language.

Abstract:
We conduct the numerical and experimental study of sharp focusing of a linearly polarized asymmetric Bessel beam with topological charge n = 3 and a crescent-shaped transverse intensity pattern. Using the Debye integral, we show that in the focal plane of a high NA aplanatic lens (NA = 0.9 – 0.95) the intensity distribution is also crescent-shaped.  Using the FDTD method it is shown that a binary zone plate with NA = 0.995 also forms a crescent-shaped focal spot that is rotated around the optical axis. An asymmetric Bessel beam was generated using a spatial light modulator (SLM) and focused using an immersion objective with NA = 1.25. A crescent-shaped intensity pattern formed in the focal plane was rotated by 90 degrees relative to the SLM-aided crescent.

Keywords:
optical vortices; propagation; modes.

References:

  1. Kotlyar, V.V. Diffraction-free asymmetric elegant bessel beams with fractional orbital angular momentum / V.V. Kotlyar, A.A. Kovalev, V.A. Soifer // Computer Optics. – 2014. – Vol. 38(1). – P. 4-10.
  2. Kotlyar, V.V. Asymmetric Bessel modes / V.V. Kotlyar, A.A. Kovalev, V.A. Soifer // Optics Letters. – 2014. – Vol. 39(8). – P. 2395-2398.
  3. Kotlyar, V.V. Rotating elegant bessel-gaussian beams / V.V. Kotlyar, A.A. Kovalev, R.V. Skidanov, V.A. Soifer // Computer Optics. – 2014. – Vol. 38(2). – P. 162-170.
  4. Kotlyar, V.V. Assymetric Bessel-Gauss beams / V.V. Kot­lyar, A.A. Kovalev, R.V. Skidanov, V.A. Soifer // Journal of the Optical Society of America A. – 2014. – Vol. 31(9). – P. 1977-1983.
  5. Gong, L. Observation of the asymmetric Bessel beams with arbitrary orientation using a digital micromirror device / L. Gong, X.-Z. Qiu, Y.-X. Ren, H.-Q. Zhu, W.-W. Liu, J.-H. Zhou, M.-C. Zhong, X.-X. Chu, Y.-M. Li // Optics Express. – 2014. – Vol. 22(22). – P. 26763-26776.
  6. Sheppard, C.J.R. Two-dimensional complex source point solutions: application to propagationlly invarint beams,optical fiber modes, planar waveguides, and plasmonic devices / C.J.R. Sheppard, S.S. Kou, J. Lin // Journal of the Optical Society of America A. – 2014. – Vol. 31(12). – P. 2674-2679.
  7. Bouchal, Z. Non-diffractive vector Bessel beams / Z. Bouchal, M. Olivik // Journal of Modern Optics. – 1995. – Vol. 42(8). – P. 1555-1566.
  8. Yu, Y.Z. Vector analysis of nondiffracting Bessel beams / Y.Z. Yu, W.B. Dou // Progress in Electromagnetics Research Letters. – 2008. – Vol. 5. – P. 57-71.
  9. Schafer, F.P. On some properties of axicons / F.P. Schafer // Applied Physics B. – 1986. – Vol. 39. – P. 1-8.
  10. Rykov, М.A. Modifying the laser beam intensity distribution for obtaining improved strength characteristics of an optical trap / М.A. Rykov, R.V. Skidanov // Applied Optics. – 2014. – Vol. 53(2). – P. 156-164.
  11.  Davidson, N. High-numerical-aperture focusing of radially polarized doughnut beams with a parabolic mirror and a flat diffractive lens / N. Davidson, N. Bokor // Optics Letters. – 2004. – Vol. 29(12). – P. 1318-1320.
  12.  Richards, B. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic systems / B. Richards, E. Wolf // Proceedings of the Royal Society of London A. – 1959. – Vol. 253. – P. 358-379.
  13. Stafeev, S.S. Subwavelength focusing of laser light by mic­rooptics / S.S. Stafeev, V.V. Kotlyar, L. O'Faolain // Journal of Modern Optics. – 2013. – Vol. 60(13). – P. 1050-1059.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; e-mail: ko@smr.ru; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20