Determining ways of improving the tribological properties of the silicon carbide ceramic using a pulse-periodic laser treatment
Murzin S.P., Balyakin V.B., Melnikov A.A., Vasiliev N.N., Lichtner P.I.

 

Samara State Aerospace University

 

DOI: 10.18287/0134-2452-2015-39-1-64-69

Full text of article: Russian language.

Abstract:
Laser surface microstructuring is applied to improve the tribological properties of materials. To increase potential practical applications, the expansion of the laser microstructuring functionalities through the use of more common laser systems with pulse durations in the millisecond range may show promise. For the first time it was shown that the tribological properties of the surface of the silicon carbide ceramic can be improved using a pulse-periodic laser treatment with millisecond pulses. Morphological changes of the surface under treatment after the exposure to pulse-periodic laser light were assessed. It was found that the pulse-periodic laser treatment with 0.5-ms pulses of energy 1.1 J  led to the smoothing of recesses in the polished surface of the silicon carbide ceramic. Higher-energy laser treatment led to the formation of cracks on the material surface. The study of tribological properties of the resulting structures showed that following the laser treatment the mean value of the friction coefficient decreased by 15 %.

Keywords:
laser treatment, microstructuring, ceramic material, silicon carbide, surface, friction coefficient.

References:

  1. Blatter, A. Lubricated friction of laser micro-patterned sapphire flats // A. Blatter, M. Maillat, S.M. Pimenov, G.A. Sha­feev, A.V. Simakin // Tribology Letters. – 1998. – Vol. 4, Issue 3-4. – P. 237-241.
  2. Etsion, I. State of the art in laser surface texturing / I. Etsion // Journal of Tribology. – 2005. – Vol. 127, Issue 1. – P. 248-253.
  3. Andersson, P. Microlubrication effect by laser-textured steel surfaces / P. Andersson, J. Koskinen, S. Varjus, Y. Gerbig, H. Haefke, S. Georgiou, B. Zhmud, W. Buss // Wear. – 2007. – Vol. 262, Issue 3-4. – P. 369-379.
  4. Seifert, G. Self-organized structure formation on the bottom of femtosecond laser ablation craters in glass / G. Seifert, M. Kaempfe, F. Syrowatka, C. Harnagea, D. Hesse, H. Gra­ener // Applied Physics A: Materials Science and Processing. – 2005. – Vol. 81, Issue 4. – P. 799-803.
  5. Groenendijk, M. Microstructuring using femtosecond pulsed laser ablation / M. Groenendijk, J. Meijer // Journal of Laser Applications. – 2006. – Vol. 18, Issue 3. – P. 227-235.
  6. Radek, N. The average friction coefficient of laser textured surfaces of silicon carbide identified by RSM methodology / N. Radek, J. Pietraszek, B. Antoszewski // Advanced Materials Research. – 2014. – Vol. 11, Issue 9. – P. 337-343. – ISSN 1022-6680.
  7. Falaleev, S.V. Mechanical gas dynamic seals / S.V. Falale­ev, D.K. Novikov, V.B. Balyakin, V.V. Sedov. – Samara: “Samara Scientific Center of RAS” Publisher, 2013. – 300 p. – (In Russian).
  8. Falaleev, S.V. Dynamics of the “dry” seals / S.V. Falale­ev, V.B. Balyakin, D.K. Novikov, N.I. Rosseev, S.D. Medve­dev // Gas Industry. – 2001. – Vol. 10. – P. 66-68. – ISSN 0016-5581. – (In Russian).
  9. Falaleev, S.V. Hydrodynamic characteristics of the face seal taking into account lubricant film breakdown, inertial forces and complex clearance form / S.V. Falaleev // Life Science Journal. – 2014. – Vol. 11, Issue 9. – P. 337-343. – ISSN 1097-8135.
  10. Yu, X.Q. Frictional characteristics of mechanical seals with a laser-textured seal surface / X.Q. Yu, S. He, R.L. Cai // Journal of Materials Processing Technology. – 2002. – Vol. 129, Issue 1-3. – P. 463-466.
  11. Kazanskiy, N.L. Synthesis of nanoporous structures in metallic materials under laser action / N.L. Kazanskiy, S.P. Mur­zin, Ye.L. Osetrov, V.I. Tregub // Optics and Lasers in Engineering. – 2011. – Vol. 49, Issue 11. – P. 1264-1267.
  12. Murzin, S.P. Exposure to laser radiation for creation of metal materials nanoporous structures / S.P. Murzin // Optics & Laser Technology. – 2013. – Vol. 48. – P. 509-512.
  13. Murzin, S.P. Method of composite nanomaterials synthesis under metal/oxide pulse-periodic laser treatment / S.P. Mur­zin // Computer Optics. – 2014. – Vol. 38(3). – P. 469-475. – ISSN 0134-2452.
  14. Murzin, S.P. Application of radiation focusators for creation of nanoporous metal materials with high specific surface area by laser action / S.P. Murzin, V.I. Tregub, A.A. Melnikov, N.V. Tregub // Computer Optics. – 2013. – Vol. 37(2). – P. 226-232. – ISSN 0134-2452.
  15. Murzin, S.P. Thermocycling with pulse-periodic laser action for formation of nanoporous structure in metal material / S.P. Murzin, V.I. Tregub, E.V. Shokova, N.V. Tregub // Computer Optics. – 2013. – Vol. 37(1). – P. 99-104.
  16. Murzin, S.P. Synthesis of metal materials nanoporous structures with cyclic elasto-plastic deformation under laser treatment using radiation focusators / S.P. Murzin // Computer Optics. – 2014. – Vol. 38(2). – P. 249-255. – ISSN 0134-2452.
  17. Kazanskiy, N.L. Computer-aided design of diffractive optical elements / N.L. Kazanskiy, V.V. Kotlyar, V.A. Soifer // Optical Engineering. – 1994. – Vol. 33, Issue 10. – P. 3156-3166.
  18. Doskolovich, L.L. Analysis of quasiperiodic and geometric optical solutions of the problem of focusing into an axial segment / L.L. Doskolovich, N.L. Kazanskiy, V.A. Soifer, A.Ye. Tzare­gorodtzev // Optik – International Journal for Light and Electron Optics. – 1995. – Vol. 101, Issue 2. – P. 37-41.
  19. Pavelyev, V.S. Formation of diffractive microrelief on diamond film surface / V.S. Pavelyev, S.A. Borodin, N.L. Kazanskiy, G.F. Kostyuk, A.V. Volkov // Optics & Laser Tech­nology. – 2007. – Vol. 39, Issue 6. – P. 1234-1238.
  20. Golovashkin, D.L. Solving Diffractive Optics Problems using Graphics Processing Units / D.L. Golovashkin, N.L. Ka­sanskiy // Optical Memory and Neural Networks (Information Optics). – 2011. – Vol. 20, Issue 2. – P. 85-89.
  21. Khonina, S.N. Vortex phase transmission function as a factor to reduce the focal spot of high-aperture focusing system / S.N. Khonina, N.L. Kazanskiy, S.G. Volotovsky // Journal of Modern Optics. – 2011. – Vol. 58, Issue 9. – P. 748-760.
  22. Kazanskiy, N.L. Research & education center of diffractive optics / N.L. Kazanskiy // Proceedings of SPIE. – 2012. – Vol. 8410. – P. 84100R. – DOI: 10.1117/12.923233.
  23. Kazanskiy, N. Binary beam splitter / N. Kazanskiy, R. Ski­danov // Applied Optics. – 2012. – Vol. 51, Issue 14. – P. 2672-2677.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; e-mail: ko@smr.ru; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20