Boundary extraction in images using a clustering algorithm
Belim S.V., Kutlunin P.E.

 

F.M. Dostoevskiy Omsk State University

 

DOI: 10.18287/0134-2452-2015-39-1-119-124

Full text of article: Russian language.

Abstract:
The article suggests an algorithm of boundary extraction based on image clustering. In the process of clustering, the image is decomposed into simply connected regions based on pixel color. Edges of the regions are considered as the boundaries. The proposed approach allows obtaining well-defined boundaries without blurring. The algorithm is highly resistant to impulse noise.

Keywords:
boundary extraction, edge detection in an image.

References:

  1. Fisenko, V.T. Computer image processing and recognition / V.T. Fisenko, T.Ju. Fisenko. – Saint-Peterburg: "SPbGU ITMO" Publisher, 2008. – 192 p. – (In Russian).
  2. Popov, G.A. About one method of low-speed filtration of sonar images / G.A. Popov, D.A. Hrjashchjov // Astrakhan Technical State University Reporter: Marine Machinery and Technology Series. – 2010. – Vol. 1. – P. 63-68. – (In Russian).
  3. Computer Image Processing, Part II: Methods and algorithms / A.V. Chernov, V.M. Chernov, M.A. Chicheva, V.A. Fursov, M.V. Gashnikov, N.I. Glumov, N.Yu. Ilyasova, A.G. Khra­mov, A.O. Korepanov, A.V. Kupriyanov, E.V. Myasnikov, V.V. Myasnikov, S.B. Popov, V.V. Sergeyev; ed. by V.A. Soifer. – VDM Verlag, 2009. – 584 p.
  4. Zharkih, A.A. Two-stage algorithm of allocation of contours images / A.A. Zharkih // Moscow Technical State University Reporter. – 2009. – Vol. 12, Issue 2. – P. 202-205. – (In Russian).
  5. Grebenshhikov, K.D. Rank detector of local contour features of the image with a fixed level of false positives / K.D. Grebenshhikov, A.A. Spektor // Avtometriya. – 2001. – Vol. 4. – P. 119-127. – (In Russian).
  6. Bondina, N.N. Using of statical characteristics to marking of borders in medical images / N.N. Bondina, V.Je. Krivencov // National Technical University "HPI" Reporter. – 2013. – Vol. 39(1012). – P. 22-27. – (In Russian).
  7. Huang, C.P. An Integrated Edge Detection Method Using Mathematical Morphology / C.P. Huang, R.Z. Wang // Pattern Recognition and Image Analysis. – 2006. – Vol. 16, Issue 3. – P. 406-412.
  8. Buj, T.T.Ch. Analysis of methods of digital images edge detection / T.T.Ch. Buj, V.G. Spicyn // Doklady TUSURa. – Vol. 2(22), Chap. 2. – P. 221-223. – (In Russian).
  9. Kurbatova, E.E. Combained algorithm for contour detection in objects of interest in monitoring systems / E.E. Kur­batova, E.V. Medvedeva, I.Ja. Orlov // Lobachevsky State University Reporter. – 2013. – Vol. 2(1). – P. 60-65. – (In Russian).
  10. Antoshhuk, S.G. The edge selection of object images by double hyperbolic wavelet transform method / S.G. Antoshhuk, O.Ju. Babilunga, A.A. Nikolenko // Electrical Machine-buil­ding and Electrical Equipment. – 2005. – Vol. 65. – P. 65-69. – (In Russian).
  11. Zhiznjakov A.L. Allocation and analysis of edges and skeletons of halftone images using multiresolution representation [Electronic resource] / A.L. Zhiznjakov // Digital science magazine “Issledovano v Rossii”. – 2006. – URL: http://zhurnal.ape.relarn.ru/articles/2006/150.pdf (request date 14.02.2015). – (In Russian).
  12. Solnceva, M.O. Application of node clustering algorithm on graphs with sparse adjacency matrix / M.O. Solnceva, B.G. Kuharenko // Trudy MFTI. – 2013. – Vol. 5, Issue 3. – P. 75-83. – (In Russian).
  13. Dubinin, D.V. Evaluating the quality of edge detector algorithms on images approximated by homogenous Markov fields / D.V. Dubinin, V.E. Laevsky, A.I. Kochegurov // Bulletin of the Tomsk Polytechnic University. – 2010. – Vol. 9, Issue 3. – P. 130-134.
  14. Mesteckij, L.M. Skeletonization of a multiply-connected polygonal domain based on its boundary adjacent tree L.M. Mesteckij // Sibirskii Zhurnal Vychislitel'noi Matematiki. – 2006. – Vol. 9, Issue 3. – P. 201-216. – RAN, Siberian branch, Novosibirsk. – (In Russian).
  15. Gudkov, V.Ju. Methods for mathematical description and identification of fingerprint / V.Ju. Gudkov // Trudy ISA RAN. – 2008. – Vol. 38. – P. 336-356. – (In Russian).
  16. Shcherbakov, M.A. Nonlinear filtering with adaption to local properties of the image / M.A. Shcherbakov, A.P. Panov // Computer Optics. – 2014. – Vol. 38(4). – P. 818-824.
  17. Ilyasova, N.Yu. Computer technology for the spatial reconstruction of the coronary vessels structure from angiographic projections / N.Yu. Ilyasova, N.L. Kazansky, A.O. Korepanov, A.V. Kupriyanov, A.V. Ustinov, A.G. Khramov // Computer Optics. – 2009. – Vol. 33(3). – P. 281-317. – (In Russian).

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; e-mail: ko@smr.ru; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20