Accuracy estimation of object tracking methods for identification of 2D-coordinates and velocities of mechanical systems based on digital photography data
Sklyarenko M.S.

 

Perm State University (National Research University)

 

DOI: 10.18287/0134-2452-2015-39-1-125-135

Full text of article: Russian language.

Abstract:
Nowadays, computer vision methods, in particular, object tracking, are widely used by scientists and engineers.  Object tracking is primarily used in such applications as CCTV, crash tests, sports broadcasting, etc. Many methods can be adapted for non-contact optical measurements of coordinates and velocities of mechanical systems in physical experiments. The influence of camera parameters on the optical measurement accuracy is analyzed. We present a comparative review of tracking algorithms and show how they can be used in mechanical experiments and analyze their accuracy in real mechanical experiments. We also discuss our earlier developed methods adopted for the laboratory experiments, which have subpixel accuracy and are robust to lighting differences. We present a short review of tracking software. It is shown that object tracking techniques can be used for non-contact measurements and analysis of mechanical systems.

Keywords:
measurements, mechanical systems, digital photography, motion analysis, computer vision, object tracking, Hough transform, segment cross-correlation method.

References:

  1. Yilmaz, A. Object tracking: a survey / A. Yilmaz, O. Javed, M. Shah // ACM Computing Surveys (CSUR). – 2006. – Vol. 38(4). – Article 13.
  2. Kopenkov, V.N.  The estimation of the traffic flow parameters based on the videoregistration data analysis / V.N. Kopen­kov, V.V. Myasnikov // Computer Optics. – 2014. – Vol. 38(1). – P. 81-86.
  3. Comaniciu, D. Kernel-based object tracking / D. Comaniciu, V. Ramesh, P. Meer // Pattern Analysis and Machine Intelligence. – 2003. – Vol. 25(5). – P. 564-577.
  4. Kharebov, P.V. Object tracking in changing illumination conditions / P.V. Kharebov // Perm State University Bulletin. Informational Systems and Technologies. – 2009. – Vol. 9. – P. 125-128. – (In Russian).
  5. Shapiro, L. Computer vision / L. Shapiro, G. Stochman. – Prentice Hall, 2001. – 608 p.
  6. Forsyth, D.A. Computer vision: A modern approach / D.A. Forsyth, J. Ponce. – Prentice Hall, 2012. – 793 p.
  7. Camera SONY FDR-AX1 [Electronic resource]. – URL: http://www.sony.ru/electronics/handycam-videokamery/fdr-ax1(request date 25.11.2014).
  8. Sklyarenko, M.S. Using of computer vision methods in physical experiments / M.S. Sklyarenko // Perm State University Bulletin. Informational Systems and Technologies. – 2007. – Vol. 10(15). – P. 85-93. – (In Russian).
  9. Fletcher, R. Practical methods of optimization / R. Fletcher. – J. Wiley & Sons Ltd, 2000. – 456 p.
  10. Raffel, M. Particle image velocimetry: a practical guide / M. Raffel, C. Willer, J. Kompenhans. – Berlin: Springer, 1998. – 253 p.
  11. Sklyarenko, M.S. Velocity field reconstruction using distributed tracers / M.S. Sklyarenko, P.G. Frick, A.G. Yastrebov // Numerical Methods and Programming. – 2006. – Vol. 7(1). –P. 45-50. –ISSN 1726-3522 – (In Russian).
  12. Martynova, L.A. Determination of coordinates and parameters of movement of object on the basis of processing of images / L.A. Martynova, A.V. Koryakin, K.V. Lantsov, V.V. Lantsov // Computer Optics. – 2012. – Vol. 36(2). – P. 266-273. – ISSN 0134-2452. – (In Russian).
  13. Canny, J. A computational approach to edge detection / J. Canny // IEEE Transactions on Pattern Analysis and Machine Intelligence. – 1986. – Vol. 8(6). – P. 679-698.
  14. Faure, А. Perception et Reconnaissance des Formes / A. Faure. – ISBN 5-217-00629-3. – 1985 – (In French).
  15. Gupta, L. Neural networks for planar shape classification / L. Gupta, M.R. Sayeh // IEEE. – 1988. – P. 936. – DOI: 10.1109/ICASSP.1988.196744.
  16. Hough, P.V.C. Method and means for recognizing complex patterns // U.S. Patent 3069654, 1962.
  17. Russel, J. Hough transform / J. Russel, R. Cohn. – Book on Demand Ltd, 2012.
  18. Liangwongsan, S. Extracted circle Hough Transform and circle defect detection algorithm / S. Liangwongsan, B. Marungsri, R. Oonsivilai, A. Oonsivilai // World Academy of Science, Engineering and Technology. – 2011. – Vol. 5. – P. 432-436.
  19. Mitra, J. Peak trekking of hierarchy mountain for the detection of cerebral aneurysm using modified Hough circle transform / J. Mitra, T. Halder, A. Chandra // Electronic Letters on Computer Vision and Image Analysis. – 2013. – Vol. 12(1). – P. 57-84.
  20. Duda, R. Use of the Hough transformation to detect lines and curves in pictures / R. Duda, P. Hart // Communications of the ACM. – 1972. –V. 15(1). – P. 11-15.
  21. Hough circle transform in OpenCV library [Electronic resource]. – URL: http://docs.opencv.org/doc/tutorials/ img­proc/imgtrans/hough_circle/hough_circle.html (request date 25.11.2014).
  22. Yuen, H.K. Comparative study of Hough transform methods for circle finding / H.K. Yuen, J. Princen, J. Illingworth, J. Kittler // Image and Vision Computing. – 1990. – Vol. 8(1). – P. 71-77.
  23. Davies, E.R. A modified Hough scheme for general circle location / E.R. Davies // Pattern Recognition Letters. – 1988. – Vol. 7(7). – P. 37-43.
  24. Du, W. A robust Hough transform algorithm for determining the radiation centers of circular and rectangular fields with subpixel accuracy / W. Du, J. Yang // Physics in Medicine and Biology. – 2009. – Vol. 54. – P. 555-567.
  25. Mairesse, F. Subpixel determination of imperfect circles characteristics / F. Mairesse, T. Sliwa, S. Binczak, Y. Voicin // Journal of Pattern Recognition. – 2008. –Vol. 41(1). – P. 250-271.
  26. Chernov, N.I. Effective algorithms for circle fitting / N.I. Chernov, G.A. Ososkov // Computer Physics Commications. – 1984. – Vol. 33. – P. 329-333.
  27. Halir, R. Numerically stable direct least squares fitting of ellipses / R. Halir, J. Flusser // Proc. Int. Conf. in Central Europe on Computer Graphics, Visualization and Interactive Digital Media. – 1998. – P. 125-132.
  28. Ray, A. Non-linear least squares ellipse fitting using the genetic algorithm with applications to strain analysis / A. Ray, D. Srivastava // Journal of Structural Geology. – 2008. – Vol. 30(12). – P. 1593-1602.
  29. Sklyarenko, M.S. Mechanical oscillations research using high-speed photographing / M.S. Sklyarenko, M.A.Martse­nyuk // Saint-Petersburg State Polytechnical University Jo­urnal. – 2007. – Vol. 1(4). – P. 167-174. – ISSN 1994-2354. – (In Russian).
  30. Skljarenko, M.S. Forced mechanical oscillations study based on high-speed photography / M.S. Skljarenko, M.A. Martsenyuk, V.G. Sivkov // Saint-Petersburg State Polytechnical University Journal. Computer Science. Telecommunications and Control Systems. – 2009. – Vol. 6(91). – P. 244-252. – ISSN 2304-9766. – (In Russian).
  31. Ketov, A.I. Identification of locomotion model / A.I. Ketov, M.A. Martsenyuk, M.S. Sklyarenko, P.A. Teterin // Perm state university bulletin. Informational systems and technologies. – 2007. – Vol. 10(15). – P. 19-22. – (In Russian).
  32. Vicon Motion Systems Ltd. [Electronic resource]. – URL: http://vicon.com (request date 25.11.2014).
  33. Deepak, M.А. Photogrammetric measurements for rigid body movements in low speed wind tunnel testing / M.A. Deepak [Electronic resource]. – URL: http://casgc.ucsd.edu/blog/wp-content/uploads/Technical-Report-Vicon-Final.pdf (request date 25.11.2014).
  34. Lochmatter, T. SwisTrack – A Flexible Open Source Trac­king Software for Multi-Agent Systems [Electronical resource] / T. Lochmatter, P. Roduit, C. Cianci, N. Correll, J. Jacot, A. Martinoli. – URL: http://infoscience.epfl.ch/record/125704/files/report.pdf (request date 25.11.2014).
  35. TemaMotion product info [Electronic resource]. – URL: http://www.imagesystems.se/PDF/TEMA/TEMAMotionPro­ductinfo.pdf (request date 25.11.2014).
  36. Firearms analysis [Electronic resource]. – URL: http://www.imagesystems.se/media/138523/application%20note%20firearms%20and%20ammunition.pdf (request date 25.11.2014).
  37. Janiszewski, J. Measurement procedure of ring motion with the use of high-speed camera during electromagnetic expansion / J. Janiszewski // Metrology and Measurement Systems. – 2012. – Vol. 19(4). – P. 797-804.
  38. Intel IPP library [Electronic resource]. – URL: https://soft­ware.intel.com/en-us/intel-ipp (request date 25.11.2014).

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; e-mail: ko@smr.ru; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20