Study of focusing into closely spaced spots via illuminating a diffractive optical element by a short-pulse laser beam
S.N. Khonina
, S.A. Degtyarev, A.P. Porfirev, O.Yu. Moiseev, S.D. Poletaev, A.S. Larkin, A.B. Savelyev-Trofimov

 

Image Processing Systems Institute, Russian Academy of Sciences,

Samara State Aerospace University,

Faculty of Physics, Lomonosov Moscow State University

 

DOI: 10.18287/0134-2452-2015-39-2-187-196

Full text of article: Russian language.

Abstract:
We perform a comparative numerical study of the formation of closely spaced focal spots in the focal plane with diffraction gratings and binary optical elements matched with the Hermite-Gaussian modes. It is shown that low-index modes provide the generation of good-quality focal spots and relative tolerance to chromatic dispersion. Experiments with pulsed and tunable lasers have shown that phase optical elements matched with TEM(1,0) and TEM(1,1) modes show promise for creation of arrays of closely spaced focal spots.

Keywords:
focusing into focal spot arrays, diffractive optical element, binary phase, short laser pulses, chromatic dispersion.

itation:
Khonina SN, Degtyarev SA, Porfirev AP, Moiseev OYu, Poletaev SD, Larkin AS, and Savelyev-Trofimov AB. Study of focusing into closely spaced spots at illuminating diffractive optical element by short pulse laser beam. Computer Optics 2015; 39(2): 187-4

References:

  1. Umstadter, D. Relativistic laser-plasma interactions / D. Umstadter // Journal of Physics D: Applied Physics. – 2003. – Vol. 36(8). – P. R151-R165.
  2. Sun, H.-B. Two-photon photopolymerization and 3D lithographic microfabrication / H.-B. Sun, S. Kawata // Advances in Polymer Science. – 2004. – Vol. 170. – P. 169-273.
  3. Salamin, Y.I. Relativistic high-power laser–matter interactions / Y.I. Salamin, S.X. Hu, K.Z. Hatsagortsyan, C.H. Keitel // Physics Reports. – 2006. – Vol. 427(2-3). – P. 41-155.
  4. Malka, V. Principles and applications of compact laser-plasma accelerators / V. Malka, J. Faure, Y.A. Gauduel, E. Lefebvre, A. Rousse K.T. Phuoc // Nature Physics. – 2008. – Vol. 4. – P. 447-453.
  5. Cheng, J. A review of ultrafast laser materials micromachining / J. Cheng, C. Liu, S. Shang, D. Liu, W. Perrie, G. De­arden and K. Watkins // Optics and Laser Technology. – 2013. – Vol. 46. – P. 88-102.
  6. Andreev, A.V. Nuclear processes in a high-temperature plasma produced by an ultrashort laser pulse / A.V. Andreev, V.M. Gordienko, A.B. Savel’ev // Quantum Electronics. – 2001. – Vol. 31(11). – P. 941-956.
  7. Alferov, S.V. On the possibility of controlling laser ablation by tightly focused femtosecond radiation / S.V. Alferov, S.V. Karpeev, S.N. Khonina, K.N. Tukmakov, O.Yu. Moiseev, S.A. Shulyapov, K.A. Ivanov, A.B. Savel’ev-Trofimov // Quantum Electronics. – 2014. – Vol. 11. – P. 1061-1065.
  8. Kato, N. Multiple-spot parallel processing for laser micronanofabrication / N. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun and S. Kawata // Applied Physics Letters. – 2005. – Vol. 86(4). – P. 044102-044104.
  9. Salter, P.S. Addressable microlens array for parallel laser microfabrication / P.S. Salter and M.J. Booth // Optics Letters. – 2011. – Vol. 36(12). – P. 2302-2304.
  10. Shoji, S. Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin / S. Shoji and S. Kawata // Applied Physics Letters. – 2000. – Vol. 76(19). – P. 2668-2670.
  11. Kondo, T. Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses / T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis and H. Misawa // Applied Physics Letters. – 2003. – Vol. 82(17). – P. 2758-2760.
  12. Dong, X.-Z. Micronanofabrication of assembled three-dimen­sional microstructures by designable multiple beams multiphoton processing / X.-Z. Dong, Z.-S. Zhao and X.-M. Duan // Applied Physics Letters. – 2007. – Vol. 91(12). – P. 124103.
  13. Computer Design of Diffractive Optics / D.L. Golovashkin, V.V. Kotlyar, V.A. Soifer, L.L. Do­s­ko­lo­vich, N.L. Kazan­skiy, V.S. Pavelyev, S.N.  Khonina, R.V. Skidanov; ed. by V.A. Soifer. – Cambridge International Science Publishing Limited & Woodhead Publishing Limited, 2012. – 896 p.
  14. Diffracrive Nanophotonics / A.V. Gavrilov, D.L. Golo­vashkin, L.L. Doskolovich, P.N. Dyachenko, S.N. Khonina, V.V. Kotlyar, A.A. Kovalev, A.G. Nalimov, D.V. Nesterenko, V.S. Pavelyev, Y.O. Shuyupova, R.V. Skidanov, V.A. Soifer; ed. by V.A. Soifer. – CRC Press, Taylor&Francis Group, CISP, Boca Raton, 2014. – 679 p.
  15. Kuroiwa, Y. Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements / Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka and K. Hirao // Optics Express. – 2004. – Vol. 12(9). – P. 1908-1915.
  16. Hayasaki, Y. Variable holographic femtosecond laser processing by use of a spatial light modulator / Y. Hayasaki, T. Sugimoto, A. Takita and N. Nishida // Applied Physics Letters. – 2005. – Vol. 87(3). – P. 031101.
  17. Kelemen, L. Parallel photopolymerisation with complex light patterns generated by diffractive optical elements / L. Kelemen, S. Valkai and P. Ormos // Optics Express. – 2007. –. Vol. 15(22). – P. 14488-14497.
  18. Kuang, Z. High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator / Z. Kuang, W. Perrie, J. Leach, M. Sharp, S.P. Edwardson, M. Padgett, G. Dearden and K.G. Watkins // Applied Surface Science. – 2008. – Vol. 255(5). – P. 2284-2289.
  19. Kuang, Z. Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring / Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden and K. Watkins // Applied Surface Science. – 2009. – Vol. 255(13-14). – P. 6582-9588.
  20. Obata, K. Multi-focus two-photon polymerization technique based on individually controlled phase modulation / K. Obata, J. Koch, U. Hinze and B.N. Chichkov // Optics Express. – 2010. – Vol. 18(16). – P. 17193-17200.
  21. Amako, J. Chromatic-distortion compensation in splitting and focusing of femtosecond pulses by use of a pair of diffractive optical elements / J. Amako, K. Nagasaka and N. Kazuhiro // Optics Letters. – 2002. – Vol. 27(11). – P. 969-971.
  22. Torres-Peiró, S. Parallel laser micromachining based on diffractive optical elements with dispersion compensated femtosecond pulses / S. Torres-Peiró, J. González-Ausejo, O. Mendoza-Yero, G. Mínguez-Vega, P. Andrés and J. Lancis // Optics Express. – 2013. – Vol. 21(26). – P. 31830-31836.
  23. Zapata-Rodríguez, C.J. Isotropic compensation of diffraction-driven angular dispersion / C.J. Zapata-Rodríguez and M.T. Caballero // Optics Letters. – 2007. – Vol. 32(17). – P. 2472-2474.
  24. Karpeev, S.V Study of the broadband radiation intensity distribution formed by diffractive optical elements / S.V. Karpeev, S.V. Alferov, S.N. Khonina, S.I. Kudryashov // Computer Optics. – 2014. – Vol. 38(4). – P. 689-694.
  25. Berezny, A.E. Computer-generated holographic optical elements produced by photolithography / A.E. Berezny, S.V. Karpeev, G.V. Uspleniev // Optics and Lasers in Engineering.  – 1991. – Vol. 15(5). – P. 331-340.
  26. Khonina, S.N. Formation of Gaussian-Hermite modes using binary DOEs. I. Modeling and experiments / S.N. Khonina, V.V. Kotlyar, V.A. Soifer, M. Honkanen, J. Turunen // Computer Optics. – 1998. – Vol. 18. – P. 24-28.
  27. Khonina, S.N. Generation of Gauss-Hermite modes using binary DOEs / S.N. Khonina, V.V. Kotlyar, V.A. Soifer, J. Lautanen, M. Honkanen, J. Turunen // Proceedings of SPIE. – 1999. – Vol. 4016. –  P. 234-239.
  28. Khonina, S.N. Formation of Gaussian-Hermite modes using binary DOEs. II. Optimization of the aperture function / S.N. Kho­nina // Computer Optics. – 1998. – Vol. 18. – P. 28-36.
  29. Kirk, J.P. Phase-only complex-valued spatial filters / J.P. Kirk and A.L. Jones // Journal of the Optical Society of America. – 1971. – Vol. 61(8). – P. 1023-1028.
  30. Haskell, R.E. New coding technique for computer-generated holograms / R.E. Haskell and B.C. Culver // Applied Optics. – 1972. – Vol. 11(11). – P. 2712-2714.
  31. Chu, D.C. Recent approach to computer-generated holograms / D.C. Chu and J.R. Fienup // Optical Engineering. – 1974. – Vol. 13(3). – P. 189-195.
  32. Kotlyar, V.V. A partial encoding technique to design phase shapers for generating Hermite-Gaussian modes / V.V. Kotlyar, S.N. Khonina, V.A. Soifer // Avtometriya. – 1999. – Vol. 6. – P. 74-83.
  33. Kotlyar, V.V. Fractional encoding method for spatial filters computation / V.V. Kotlyar, S.N. Khonina, A.S. Melekhin, V.A. Soifer // Asian Journal of Physics. – 1999. – Vol. 8(3). – P. 273-286.
  34. Khonina, S.N. Encoded binary diffractive element to form hyper-geometric laser beams / S.N. Khonina, S.A. Balalayev, R.V. Skidanov, V.V. Kotlyar, B. Paivanranta, J. Turunen // Journal of Optics A: Pure and Applied Optics. – 2009. – Vol. 11(6). – P. 065702.
  35. Ivanov, K. Acceleration of heavy multicharged ions in the interaction of a subrelativistic femtosecond laser pulse with a melted metal surface / K. Ivanov, D. Uryupina, N. Morshedian, R. Volkov and A. Savel’ev // Plasma Physics Reports. – 2010. – Vol. 36(2). – P. 99-104.
  36. Uryupina, D.S. Femtosecond laser-plasma interaction with prepulse-generated liquid metal microjets / D.S. Uryupina, K.A. Ivanov, A.V. Brantov, A.B. Savel'ev, V.Yu. Bychenkov, M.E. Povarnitsyn, R.V. Volkov, V.T. Tikhonchuk // Physics of Plasmas. – 2012. – Vol. 19. – P. 013104(1-8).
  37. Lar'kin, A. Microjet formation and hard x-ray production from a liquid metal target irradiated by intense femtosecond laser pulses / A. Lar'kin, D. Uryupina, K. Ivanov, A. Savel'ev, T. Bonnet, F. Gobet, F. Hannachi, M. Tarisien, M. Versteegen, K. Spohr, J. Breil, B. Chimier, F. Dorchies, C. Fourment, P.-M. Leguay and V.T. Tikhonchuk // Physics of Plasmas. – 2014. – Vol. 21. – P. 093103(1-7).

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; e-mail: ko@smr.ru; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20