A Deterministic Evolutionary Algorithm for the Global Optimization of Morse Cluster
A.N. Kovartsev

 

Samara State Aerospace University

 

DOI: 10.18287/0134-2452-2015-39-2-234-240

Full text of article: Russian language.

Abstract:
In this paper we propose a new deterministic evolutionary algorithm for global optimization of Morse clusters. The algorithm has been proven to possess the polynomial efficiency due to the problem-specific heuristics applied. We illustrate the effectiveness of the approach by a set of test problems in structural Morse cluster optimization.

Keywords:
Morse clusters, Morse potential, cluster structures, global optimization, population of cluster conformations.

References:

  1. Cheng, L. Global Minimum Structures of Morse Clusters as a Function of the Range of the Potential: 81 <= N <= 160 / L. Cheng, J. Yang // Journal of Physical Chemistry A. – 2007. – Vol. 111. – P. 5287- 5293.
  2. Kovartsev, A.N On efficiently of parallel algorithms for global optimization of functions of several variables / A.N. Kovartsev, D.A. Popova-Kovartseva // Computer Optics. – 2011. – Vol. 35(2). – P. 256-261. – (In Russian).
  3. Wales, D. Global Optimization by Basin-Hopping and the Lowest Energy Structures of lennard-jones Clusters Containing up to 110 Atoms / D. Wales, J. Doye // Journal of Physical Chemistry А. – 1997. – Vol. 101. – P. 5111-5116.
  4. The Cambridge Cluster Database [Electronic resourse]. – URL: http://www-wales.ch.cam.ac.uk/CCD.html (Request date: 07.04.2014).
  5. Posypkin, M.A. Numerical Methods and the Distributed Software Infrastructure for Structural Cluster Optimizations / М.А. Posypkin // Proceedings of Conference PaVT'2009. – 2009. – P. 528-536. – (In Russian).
  6. Pullan, W. Unbiased Geometry Optimization of Morse Atomic Clusters / W. Pullan // WCCI 2010 IEEE World Congress on Computational Intelligence. – CCIB, Barcelona, Spain. – 2010. – P. 4496-4502.
  7. Lourenço, N. DACCO: A Discrete Ant Colony Algorithm to Cluster Geometry Optimization. / N. Lourenço, F.B. Pereira // GECCO '12 Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation. – ACM New York, NY, USA. – 2012. – P. 41-48.
  8. Kovartsev, A.N. Efficiency of parallel global optimization of multivariable function / A.N. Kovartsev, D.A. Popova-Kovartseva, P.V. Abolmasov // Vestnik UNN. – 2013. – Vol. 3(1). – P. 252-261. – (In Russian).

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; e-mail: ko@smr.ru; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20