Object recognition in radar images using conjugation indices and support subspaces
D.A. Zherdev, N.L. Kazanskiy, V.A. Fursov

 

Image Processing Systems Institute, Russian Academy of Sciences,

Samara State Aerospace University

 

DOI: 10.18287/0134-2452-2015-39-2-255-264

Full text of article: Russian language.

Abstract:
We suggest an object recognition method based on synthetic aperture radar images. The so-called conjugation index between the vector under recognition and a subspace composed of vectors of a training set has been used as a distance function. The processes of clustering have been constructed using support subspaces. Different processes of the training set resampling through the exclusion of vague vectors from the set using the conjugation index have been discussed. The dependence of the recognition quality on the support subspace dimension has been analyzed. The results of experiments demonstrate that the proposed method provides a higher recognition quality than that offered by the support vector method (SVM).

Keywords:
digital image processing, synthetic aperture radar (SAR) image, MSTAR, recognition, conjugation index, support vector method (SVM).

References:

  1. Moving and Stationary Target Acquisition and Recognition (MSTAR) Public Dataset [Electronic resource]. – URL: https://www.sdms.afrl.af.mil/index.php?collection=mstar (request date 01.03.2015).
  2. Zhao, Qu. Synthetic aperture radar automatic target recognition with three strategies of learning and representation / Qu. Zhao, J. C. Principe, V.L. Brennan, D. Xu, Zh. Wang // Optical Engineering. – 2000. – Vol. 39(5). – P. 1230-1244.
  3. Diemunsch, J.R. MSTAR model-based automatic target recognition: search technology for a robust ATR / J.R. Diemunsch, J. Wissinger // Proceedings of SPIE 3370, Algorithms for Synthetic Aperture Radar Imagery V. – 1998. – P. 481-492.
  4. Gallant, J.F. Automatic Target Recognition for Synthetic Aperture Radar / J.F. Gallant // The Royal Canadian Air Force Journal. – 2013. – Vol. 2. – P. 8-18.
  5. Amoon, M. Automatic target recognition of synthetic aperture radar (SAR) images based on optimal selection of Zernike moments features / M. Amoon, G. Rezairad // IET Computer Vision. – 2013. – Vol. 8(2). – P. 77-85.
  6. Novak, L.M. The Automatic Target-Recognition System in SAIP / L.M. Novak, G.J. Owirka, W.S. Brower, A.L Weaver // Lincoln Laboratory Journal. – 1997. – Vol. 10(2). – P. 187-202.
  7. Fulgham, D.A. DARPA Looks Anew at Hidden Targets / D.A. Fulgham // Aviation Week and Space Technol. – 1997. – Vol. 146(1). – P. 56-57.
  8. Ross, T.D. Standard SAR ATR Evaluation Experiments using the MSTAR Public Release Data Set / T.D. Ross, S.W. Worrell, V.J. Velten, J.C. Mossing, M.L. Bryant // Proceedings of SPIE 3370, Algorithms for Synthetic Aperture Radar Imagery V. – 1998. – P. 566-573.
  9. Mossing, J.C. An Evaluation of SAR ATR Algorithm Performance Sensitivity to MSTAR Extended Operating Conditions / J.C. Mossing, T.D. Ross // Proceedings of SPIE 3370, Algorithms for Synthetic Aperture Radar Imagery V. – 1998. – P. 554-565.
  10. Keydel, E.R. MSTAR Extended Operating Conditions a Tutorial / E.R. Keydel, S.W. Lee, J.T. Moore // Proceedings of SPIE 2757, Algorithms for Synthetic Aperture Radar Imagery III. – 1996. – P. 228-242.
  11. Sun, Y. Adaptive Boosting for Synthetic Aperture Radar Automatic Target Recognition / Y. Sun, Z. Liu, S. Todorovic, J. Li // Aerospace and Electronic Systems, IEEE Transactions on. – 2007. – Vol. 43(1). – P. 112-125.
  12. Fursov, V.A. Thematic classification of hyperspectral images using conjugacy indicator / V.A. Fursov, S.A. Bibikov, O.A. Bajda // Computer Optics. – 2014. – Vol. 38(1). – P. 154-158. – ISSN 0134-2452.
  13. Zherdev, D.A. Object recognition by the radar signatures of electromagnetic field scattering on base of support subspaces method / D.A. Zherdev, N.L. Kazanskiy, V.A. Fursov // Computer Optics. – 2014. – Vol. 38(3). – P. 503-510. – ISSN 0134-2452.
  14. Kottke, D.P. A Design for HMM-Based SAR ATR / D.P. Kottke, P.D. Fiore, K.L. Brown, J.K. Fwu // Proceedings of SPIE 3370, Algorithms for Synthetic Aperture Radar Imagery V. – 1998. – P. 541-551.
  15. Rosin, P.L. Unimodal thresholding / P.L. Rosin // Pattern Recognition. – 2001. – V. 34(11). – P. 2083-2096.
  16. Bishop, Ch.M. Pattern Recognition and Machine Learning / Ch.M. Bishop. – New York: Springer, 2006. – 738 p.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; e-mail: ko@smr.ru; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20