Frequency stabilization of a single-photon source based on spontaneous parametric down-conversion by an external electric field
D.O. Akatiev, A.A. Kalachev


Kazan Federal University, Kazan, Russia,
Zavoisky Physical-Technical Institute,

Russian Academy of Sciences, Kazan, Russia

Full text of article: Russian language.

In this paper, we examine a method of controlling the spectrum of spontaneous parametric down-conversion in crystals with quadratic nonlinearity by an external homogeneous electric field via the Pockels effect, and discuss the possibility of stabilizing the carrier frequency of the corresponding single-photon source based on backward-wave spontaneous parametric down-conversion.

single photon source, spontaneous parametric down-conversion.

Akatiev DO, Kalachev AA. Frequency stabilization of a single-photon source based on spontaneous parametric down-conversion by an external electric field. Computer Optics 2016; 40(1): 26-30. DOI: 10.18287/2412-6179-2016-40-1-26-30.


  1. Eisaman MD, Fan J, Migdall A, Polyakov SV. Invited review article: Single-photon sources and detectors. Review of Scientific Instruments 2011; 82(7): 071101.
  2. Chunnilall CJ, Degiovanni IP, Kück S, Müller I, Sinclair AG. Metrology of single-photon sources and detectors: a review. Optical Engineering 2014; 53(8): 081910.
  3. Takeuchi S. Recent progress in single-photon and entangled-photon generation and applications. Japanese Journal of Applied Physics 2014; 53(3): 030101.
  4. Bertolotti M, Bovino F, Sibilia C. Quantum State Engineering Generation of Single and Pairs of Photons. Progress in Optics 2015; 60: 1-117.
  5. Booth MC, Atatüre M, Di Giuseppe G, Saleh BE, Sergienko AV, Teich MC. Counter propagating entangled photons from a waveguide with periodic nonlinearity. Physical Review A 2002; 66(2): 023815.
  6. Christ A, Eckstein A, Mosley PJ, Silberhorn C. Pure single photon generation by type-I PDC with backward-wave amplification. Optics Express 2009; 17(5): 3441-3446.
  7. Chuu CS, Harris SE. Ultrabright backward-wave biphoton source. Physical Review A 2011; 83(6): 061803.
  8. Shukhin AA, Akatiev DO, Latypov IZ, Shkalikov AV, Kalachev AA. Simulating single-photon sources based on backward-wave spontaneous parametric down-conversion in a periodically poled KTP waveguide. Journal of Physics: Conference Series 2015; 613(1): 012015.
  9. Katamadze KG, Paterova AV, Yakimova EG, Balygin KA, Kulik SP. Control of the frequency spectrum of a biphoton field due to the electro-optical effect. JETP Letters 2011; 94(4): 262-265. DOI: 10.1134/S0021364011160089.
  10. Katamadze KG, Kulik SP. Control of the spectrum of the biphoton field. Journal of Experimental and Theoretical Physics 2011; 112(1): 20-37. DOI: 10.1134/S1063776110061111.
  11. Rubin MH, Klyshko DN, Shih YH, Sergienko AV. Theory of two-photon entanglement in type-II optical parametric down-conversion. Physical Review A 1994; 50(6): 5122.
  12. Saleh BEA, Teich MC. Fundamentals of photonics. NY: Wiley; 1991.
  13. Bierlein JD, Arweiler CB. Electro-optic and dielectric properties of KTiOPO4. Applied Physics Letters 1986; 49(15): 917-919.
  14. Kato K, Takaoka E. Sellmeyer and thermo-optic dispersion formulas for KTP. Applied Optics 2002; 41(24): 5040-5044.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; e-mail:; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20