Thermo-optical aberrations of radially symmetric diffractive optical elements
I.A. Levin


JSC 'Rostov Optical-Mechanical Plant', Rostov-Veliky, Russia

Full text of article: Russian language.

Analytical relations that define the temperature dependence of the third-order aberration coefficients for a radiaplly symmetric diffractive optical element were derived. Also, a condition for eliminating thermal defocusing in a diffractive-refractive singlet was obtained. Possibilities of correcting aberrations in a wide temperature range for a single diffractive optical element and diffractive-refractive singlet were analyzed.

aberrations, diffractive optics, thermal effects.

Levin IA. Thermo-optical aberrations of radially symmetric diffractive optical elements. Computer Optics 2016; 40(1): 51-6. DOI: 10.18287/2412-6179-2016-40-1-51-56.


  1. Plastic Aspheric Lens – Hybrid Aspheres. Edmund Optics. Source: á aspheric-lenses/plastic-hybrid-asphe-ric-lenses/3200/ñ.
  2. Canon Camera Museum – Technology Hall – Technical Report December 2014. Source: á­um/tech/report/2014/12/ñ.
  3. Greisukh GI, Ezhov EG, Stepanov SA. Comparative analysis of chromatism diffractive and refractive lens [in Russian]. Computer Optics 2005; 28: 60-65.
  4. Greisukh GI, Ezhov EG, Levin IA, Stepanov SA. Design of achromatic and apochromatic plastic microobjectives. Applied Optics 2010; 49(23): 4379-4384.
  5. Greisukh GI, Ezhov EG, Levin IA, Stepanov SA. Design of plastic-lens micro-objectives superachromats [in Russian]. Computer Optics 2011; 35(4): 473-479.
  6. Greisukh GI, Ezhov EG, Levin IA, Stepanov SA. Design of the double-telecentric high-aperture diffractive-refractive objectives. Applied Optics 2011; 50(19): 3254-3258.
  7. Greisukh GI, Bezus EA, Bykov DA, Ezhov EG, Stepanov SA. Suppression of the spectral selectivity of two-layer phase-relief diffraction structures. Optics and Spectroscopy 2009; 106(4): 621-626.
  8. Zhao YH, Fan CJ, Ying CF, Liu SH. The investigation of triple-layer diffraction optical element with wide field of view and high diffraction efficiency. Optics Communications 2013; 295: 104-107.
  9. Greisukh GI, Danilov VA, Ezhov EG, Stepanov SA, Usievich BA. Spectral and angular dependences of the efficiency of relief-phase diffractive lenses with two- and three-layer microstructures. Optics and Spectroscopy 2015; 118(6): 964-970.
  10. Curatu G. Design and fabrication of low-cost thermal imaging optics using precision chalcogenide glass molding. Source: á Precision_Chalcogenide_Glass_Molding.pdfñ.
  11. Baumer S. Handbook of Plastic Optics. Weinheim: Wiley-VCH; 2005.
  12. Hilton AR. Chalcogenide glasses for infrared optics. NY: The McGraw-Hill Education; 2009.
  13. Greisukh GI, Bobrov ST, Stepanov SA. Optics of diffractive and gradient-index elements and systems. Bellingham: SPIE Press; 1997.
  14. The Innovative Complete Program for Optical Production. OptoTech. Source: á company/optotech_image_bro_en_0.pdfñ.
  15. Dutta U, Harza L. Monochromatic primary aberrations of a diffractive lens on a finite substrate. Applied Optics 2010; 49(18): 3613-3621.
  16. Zemax. Source: áñ.
  17. Behrmann GP, Bowen JP. Influence of temperature on diffractive lens performance. Applied Optics 1993; 32(14): 2483-2489.
  18. Rusinov MM. Technical optics: Study guide for university [in Russian]. Leningrad: “Mashinostroenie” Publisher; 1979.
  19. Londono C, Plummer WT, Clark PP. Athermalization of a single-component lens with diffractive optics. Applied Optics 1993; 32(13): 2295-2302.
  20. Schaub M, Schwiegerling J, Fest EC, Symmons A, Shepard RH. Molded Optics Design and Manufacture. Boca Raton: CRC Press, Taylor & Francis Group; 2011.
  21. Optical Glasses – Over 120 Glass Types: SCHOTT Advanced Optics. Source: < english/download/>.
    © 2009, IPSI RAS
    Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; e-mail:; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20