Sharp focusing of light using a planar gradient microlens
A.G. Nalimov, V.V. Kotlyar


Image Processing Systems Institute, Russian Academy of Sciences, Samara, Russia,
Samara State Aerospace University, Samara, Russia

Full text of article: Russian language.

It is shown numerically that using planar gradient microlenses, the coherent radiation can be focused in a narrow line of width λ/38 and length λ/5.5. The efficiency of focusing is 22%. A slitted photonic-crystal lens retains the properties of sharp focusing of light characteristic of a gradient lens. Substitution of the gradient lens by a photonic-crystal analogue synthesized in a silicon was found not to degrade the characteristics of the lens substantially. In this case, we observed a reduction of side lobes near the focal spot and a 30.2% increase of the focusing efficiency.

planar lens, photonic crystal, sharp focusing.

Nalimov AG, Kotlyar VV. Sharp focusing of light using a planar gradient microlens. Computer Optics 2016; 40 (2): 135-40. DOI: 10.18287/2412-6179-2016-40-2-135-140.


  1. Yoon J, Choi K, Song SH, Lee G. Subwavelength focusing of light from a metallic slit surrounded by grooves with chirped period. J Opt Soc of Korea 2005; 9(4): 162-8.
  2. Mote RG, Yu SF, Ng BK, Zhou W, Lau SP. Near-field focusing properties of zone plates in visible regime – New insights. Opt Express 2008; 16(13): 9554-64.
  3. Huang K, Li Y. Realization of a subwavelength focused spot without a longitudinal field component in a solid immersion lens-based system. Opt Lett 2011; 36(18): 3536-8.
  4. Stafeev SS. Faolain LO, Kotlyar VV, Nalimov AG. Tight focus of light using micropolarizer and microlens. Applied Optics 2015; 54(14): 4388-94.
  5. Doerr CR, Buhl LL. Circular grating coupler for creating focused azimuthally and radially polarized beams. Opt Lett 2011; 36(7): 1209-11.
  6. Ye F. Subwavelength vortical plasmonic lattice solitons. Opt Lett 2011; 36(7): 1179-81.
  7. Miret JJ, Zapata-Rodriguez CJ. Diffraction-free propagation of subwavelength light beams in layered media. J Opt Soc Am B 2010; 27(7): 1435-45.
  8. Zapata-Rodriguez CJ, Miret JJ. Subwavelength Bessel beams in wire media. J Opt Soc Am B 2014; 31(1): 135-43.
  9. Degtyarev SA, Ustinov AV, Khonina SN. Nanofocusing by sharp edges. Computer Optics 2014; 38(4): 629-37.
  10. Xue Y, Kuang C, Li S, Gu Z, Liu X. Sharper fluorescent super-resolution spot generated by azimuthally polarized beam in STED microscopy. Opt Express 2012; 20(16): 17653-66.
  11. Asatsuma T, Baba T. Aberration reduction and unique light focusing in a photonic crystal negative refractive. Opt Express 2008; 16(12): 8711-9.
  12. Wang B, Shen L, He S. Superlens formed by a one-dimensional dielectric photonic. J Opt Soc Am B 2008; 25(3): 391-5.
  13. Almeida VR, Xu Q; Barrios CA, Lipson M. Guiding and confining light in void nanostructure. Opt Lett 2004; 29(11): 1209-11.
  14. Kotlyar VV, Kovalev AA, Shuyupova AO, Nalimov AG, Soifer VA. Subwavelength localization of light in waveguide structures. Computer Optics 2010; 34(2): 169-86.
  15. Kotlyar VV, Nalimov AG. Hyperbolic secant slit lens for subwavelength focusing of light. Opt Lett 2013; 38(15): 2702-4.
  16. Kotlyar VV, Kovalev AA, Nalimov AG, Stafeev SS. High resolution through graded-index microoptics. Advances in Optical Technologies 2012; 2012: 1-9.
  17. Khonina SN, Volotovsky SG. Controlling the contribution of the electric field components to the focus of a high-aperture lens using binary phase structures. J Opt Soc Am A 2010; 27(10): 2188-97.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; e-mail:; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20