Implementation of the FDTD algorithm on GPU using a pyramid method
S.. Malysheva, D.L. Golovashkin

 

Image Processing Systems Institute, Russian Academy of Sciences, Samara, Russia,
Samara State Aerospace University, Samara, Russia

Full text of article: Russian language.

Abstract:
In this paper we develop a pyramid method in the context of solving time-dependent Maxwell's equations based on the finite difference time domain (FDTD) approach, which is implemented on a graphics processing unit (GPU). Application of this method allows the impact of the GPU's limited memory capacity on the computation time to be reduced, which is significant for the FDTD method.

Keywords:
FDTD, Maxwell’s equations, method of pyramids, GPU, CUDA.

Citation:
Malysheva SA, Golovashkin DL. Implementation of the FDTD algorithm on GPU using a pyramid method. Computer Optics 2016; 40(2): 179-87. DOI: 10.18287/2412-6179-2016-40-2- 179-187.

References:

  1. Taflove A, Hagness S. Computational Electrodynamics: The Finite-Difference Time-Domain Method. 3th ed. Boston: Arthech House Publishers; 2005.
  2. Kotlyar VV, Stafeev SS, Feldman AYu. Photonic Nanojets Formed By Square Microsteps [In Russian]. Computer Optics 2014; 38(1): 72-80.
  3. Tiranov D, Kalachev AA. Collective spontaneous emission in a waveguide with close to zero refractive index [In Russian]. Bulletin of the Russian Academy of Sciences 2014; 78(3): 271-275.
  4. Petrov SY, Bogacheva EV. Theoretical and experimental dosimetry in the assessment of biological action of electromagnetic fields portable radio. Message 1. Flat phantoms [In Russian]. Radiation Biology: Radioecology 2014; 54(1): 57-61.
  5. Boreskov AV, Harlamov AA. The basics of working with CUDA technology [In Russian]. Moscow: DMK Press, 2010.
  6. OpenCL – The open standard for parallel programming of heterogeneous systems. Source: áhttp://www.khronos.org/openclñ.
  7. B-CALM – Belgium California Light Machine. Source: áhttp://b-calm.sourceforge.net/ñ.
  8. FDTD solver. Source: <http://www.acceleware.com/fdtd-solvers>.
  9. Lamport L. The parallel execution of DO loops. Communications of the ACM 1974; 17(2): 83-93.
  10. Valkovskii V.  Parallel execution cycles. Method of the pyramids [In Russian]. Cybernetics 1983; 5: 51-55.
  11. Golovashkin DL, Kochurov AV. The decision of the grid equations graphical computing devices. Method pyramids. Source: áhttp://conf.nsc.ru/files/conferences/niknik-90/fulltext/37858/46076/kochurov_final.pdfñ.
  12. Yee KS. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans Antennas Propag 1966; AP-14: 302-307.
  13. Klimov VV, Nanoplasmonics [In Russian]. Moscow: Fizmatlit; 2009.
  14. Taflove A, Brodwin M. Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwells’s equation’s. IEEE Transactions of Microwave Theory and Techniques 1975; 23(8): 623-630.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; e-mail: ko@smr.ru; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20