Hyperspectral visualization of skin pathologies in visible region
I.A. Bratchenko, M.V. Alonova, O.O. Myakinin, A.A. Moryatov, S.V. Kozlov, V.P. Zakharov

 

Samara State Aerospace University, Samara, Russia,
Saratov State Technical University, Saratov, Russia,
Samara State Medical University, Samara, Russia

Full text of article: Russian language.

Abstract:
The paper presents the analysis of hyperspectral images for human skin cancer diagnosis. The hyperspectral imaging data contained backscattered spectra of normal skin and malignant skin tumors. The analysis of hyperspectral images provided the information about the shape and intensity of hemoglobin and melanin spectral lines for the differentiation of malignant pigmented skin neoplasms.

Keywords:
hyperspectral visualization, backscattering spectroscopy, melanoma, nevi.

Citation:
Bratchenko IA, Alonova MV, Myakinin OO, Moryatov AA, Kozlov SV, Zakharov VP. Hyperspectral visualization of skin pathologies in visible region. Computer Optics 2016; 40(2): 240-8. DOI: 10.18287/2412-6179-2016-40-2-240-248.

References:

  1. Kaprin AD, Starinsky VV, Petrova GV. Malignant Tumors in Russia 2013 (Morbidity and Mortality). Moscow: Russia Ministry of health; 2015.
  2. Boyle P, Levin B. World Cancer Report 2008. Lyon: International Agency for Research on Cancer; 2008.
  3. Lui H, Zhao J, McLean D, Zeng H. Real-time Raman spectroscopy for in vivo skin cancer diagnosis. Cancer Research 2012; 72(10): 2491-2500. DOI: 10.1158/0008-5472.
  4. Borisova EG, Angelova LP, Pavlova EP. Endogenous and Exogenous Fluorescence Skin Cancer Diagnostics for Clinical Applications. IEEE Journal of Selected Topics in Quantuum Electronics 2014; 20(2): 7100412. DOI: 10.1109/JSTQE.2013.2280503.
  5. Vakoc BJ. Cancer imaging by optical coherence tomography: preclinical progress and clinical potential. Nature Reviews Cancer 2012; 12: 363-368.
  6. Zhao J, Lui H, McLean DI, Zeng H. Real-time Raman spectroscopy for noninvasive in vivo skin analysis and diagnosis. New developments in biomedical engineering 2010; 24: 455-474.
  7. Zakharov VP, Bratchenko IA, Myakinin OO, Artemyev DN, Khristoforova YA, Kozlov SV, Moryatov AA. Combined Raman spectroscopy and autofluoresence imaging method for in vivo skin tumor diagnosis. Proc SPIE: The International Society for Optical Engineering 2014; 9198: 919804. DOI: 10.1117/12.2186095.
  8. Fenn MB. Raman spectroscopy for clinical oncology. Advances in Optical Technologies 2011; 201: 213783.
  9. Zakharov VP, Bratchenko IA, Myakinin OO, Artemyev DN, Khristoforova YA, Kozlov SV, Moryatov AA. Comparative analysis of combined spectral and optical tomography methods for detection of skin and lung cancers. Journal of Biomed-ical Optics 2015; 20(2): 025003. DOI: 10.1117/1.JBO.20.2.025003.
  10. Lu G, Fei B. Medical hyperspectral imaging: a review. Journal of Biomedical Optics 2014; 19(1): 010901.
  11. Diebele I, Kuzmina I. Lihachev A. Kapostinsh J. Derjabo A. Valeine L., Spigulis J. Clinical evaluation of melanomas and common nevi by spectral imaging. Biomedical optics express 2012; 3(3): 467-472.
  12. Machihin A, Pozhar V. The Double-AOTF-based aberration-free spectral imaging endoscopic system for biomedical ap-plications. Journal of innovative optical health sciences 2015; 8(3): 1541009. DOI: 10.1142/S1793545815410096.
  13. Zonios G, Bykowski J, Kollias N. Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy. Journal of Investigative Dermatology 2001; 117(6): 1452-1457.
  14. Dicker DT, Lerner J, Van Belle P, Barth SF, Guerry D 4th, Herlyn M, Elder DE, El-Deiry WS. Differentiation of normal skin and melanoma using high resolution hyperspectral imaging. Cancer Biology & Therapy 2006; 5(8): 1033-1038.
  15. Huang Z, Lui H, McLean DI, Korbelik M, Zeng H. Raman Spectroscopy in Combination with Background Near-infrared Autofluorescence Enhances the In Vivo Assessment of Malignant Tissues. Photochemistry and Photobiology 2005; 81(5): 1219-1226. DOI: 10.1562/2005-02-24-RA-449.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; e-mail: ko@smr.ru; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20