Modeling a polarization microlens to focus linearly polarized light into a near-circular subwavelength focal spot
V.V. Kotlyar
, A.G. Nalimov, M.V. Kotlyar


Image Processing Systems Institute оf RAS, – Branch of the FSRC “Crystallography and Photonics” RAS, Samara, Russia,
Samara National Research University, Samara, Russia

Full text of article: Russian language.

We propose a new version of the metalens, namely, a polarization microlens (PML) that focuses the linearly polarized laser light in a subwavelength circular spot. The PML consists of a set of binary subwavelength gratings, which are laid out in a parquet manner within the rings of a Fresnel zone plate. A phase shift of π, which the zone plate should introduce into the light field in passing the zone boundary, is implemented in the PML under study using two diffraction gratings adjacent to the zone boundary, which form oppositely polarized transmitted beams. It is shown that the PML relief depth can be reduced using a high refractive index material. For amorphous silicon, the PML relief depth can vary from 50 nm to 120 nm. In this case, a circular focal spot having a diameter smaller than the diffraction limit is formed at distances to the PML ranging from 200 nm to 1300 nm. The minimum focal spot diameter is 0.372 of a wavelength.

polarization microlens (PML), planar lens, photonic crystal, sharp focus.

Kotlyar VV, Nalimov AG, Kotlyar MV. Modeling a polarization microlens to focus linearly polarized light into a near-circular subwavelength focal spot. Computer Optics 2016; 40 (4): 451-457. DOI: 10.18287/2412-6179-2016-40-4-451-457.


  1. Yu N, Capasso F. Flat optics with designer metasurfaces. Nat Mater 2014; 13: 139-150. DOI: 10.1038/nmat3839.
  2. Yang Y, Wang W, Moitra P, Kravchenko II, Briggs DP. Dielectric meta-reflectarry for broadband linear polarization conversion and optical vortex generation. Nano Lett 2014; 14: 1394-1399. DOI: 10.1021/nl4044482.
  3. Sun S, Yang K, Wang C, Juan T, Chen WT, Liao CY, He Q, Xiao S, Kung W, Guo G, Zhou L. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett 2012; 12: 6223-6229. DOI: 10.1021/nl3032668.
  4. Lun L, Jiang W, Ma Y. Three dimensional subwavelength focus by a near-field plate lens. Appl Phys Lett 2013; 102: 231119. DOI: 10.1063/1.4810004.
  5. Verslegers L, Catrysse PB, Yu Z, White JS, Barnard ES, Brongersma ML, Fan S. Planar lenses based on nanoscale slit arrays in a metallic film. Nano Lett 2009; 9(1): 235-238. DOI: 10.1021/nl802830y.
  6. Aieta F, Genevet P, Kats MA, Yu N, Blanchard R, Gaburro Z, Capasso F. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett 2012; 12(9): 4932-4936. DOI: 10.1021/nl302516v.
  7. Arbabi A, Horie Y, Ball AJ, Bagheri M, Faraon A. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat Commun 2015; 6: 7069. DOI: 10.1038/ncomms8069.
  8. Arbabi A, Horie Y, Barheri M, Faraon A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat Nanotech 2015; 10: 937-943. DOI: 10.1038/NNANO.2015.186.
  9. Ni X, Ishii S, Kildishev AV, Shalaev VM. Ultra-thion, planar, Babinet-inverted plasmonic metalenses. Light Scien Appl 2013; 2: e72. DOI:10.1038/lsa.2013.28.
  10. West PR, Steward JL, Kildishev AV, Shalaev VM, Shkunov VV, Strohkendl F, ZakharenkovYA, Dodds RK, Byren R. All-dielectric subwavelength metasurface focusing lens. Opt Express 2014; 22 (21): 26212-26221. DOI: 10.1364/OE.22.026212.
  11. Lin D, Fan P, Hasman E, Brongersma ML. Dielectric gradient metasurface optical elements. Science 2014; 345(6194): 298-302. DOI: 10.1126/science.1253213.
  12. Kotlyar VV, Stafeev SS, Liu Y, O’Faolain L, Kovalev AA. Analysis of the shape of a subwavelength focal spot for the linear polarized light. Applied Optics 2013; 52(3): 330-339. DOI: 10.1364/AO.52.000330.
  13. Stafeev SS, Kotlyar VV, O'Faolain L. Subwavelength focusing of laser light by microoptics. J Mod Opt 2013; 60(13): 1050-1059. DOI: 10.1080/09500340.2013.831136.
  14. Dorn R, Quabis S, Leuchs G. Sharper focus for a radially polarized light beams. Physical Review Letters 2003; 91: 233901. DOI: 10.1103/PhysRevLett.91.233901.
  15. Nalimov AG, O’ Faolain L, Stafeev SS, Shanina MI, Kotlyar VV. Reflected four-zones subwavelength microoptics element for polarization conversion from linear to radial. Computer Optics 2014; 38(2): 229-236.
  16. Stafeev SS, O’Faolain L, Kotlyar VV, Nalimov AG. Tight focus of light using micropolarizer and microlens. Applied Optics 2015; 54(14): 4388-4394. DOI: 10.1364/AO.54.004388.
  17. Stafeev SS, Kotlyar MV, O’ Faolain L, Nalimov AG, Kotlyar VV. A four-zone transmission azimuthal micropolarizer with phase shift. Computer Optics 2016; 40(1): 12-18. DOI: 10.18287/2412-6179-2016-40-1-12-18.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; e-mail:; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20