Design of optical elements with TIR freeform surface
K.V. Andreeva, M.A. Moiseev, S.V. Kravchenko, L.L. Doskolovich

 

Image Processing Systems Institute оf RAS, – Branch of the FSRC “Crystallography and Photonics” RAS, Samara, Russia,
Samara National Research University, Samara, Russia

Full text of article: Russian language.

Abstract:
A novel method for the design of total internal reflection based (TIR) optical elements generating complex two-dimensional narrow-angle light distributions is presented. The method consists of two parts: computation of a piecewise smooth solution and its subsequent approximation by a spline surface. Examples of TIR optical elements designed using the proposed approach are discussed. The simulation results demonstrate high performance of the proposed method: the luminous efficacy of the optical elements is 91.8% and the relative root-mean-square error is less than 8.6%.

Keywords:
design of optical surfaces, freeform surface, total internal reflection (TIR), narrow-angle light distributions.

Citation:
Andreeva KV, Moiseev MA, Kravchenko SV, Doskolovich LL. Design of optical elements with TIR freeform surface. Computer Optics 2016; 40(4): 467-474. DOI: 10.18287/2412-6179-2016-40-4-467-474.

References:

  1. Wu R, Xu L, Liu P, Zhang Y, Zheng Z, Li H, Liu X. Freeform illumination design: a nonlinear boundary problem for the elliptic Monge–Ampére equation. Opt Lett 2013; 38(2): 229-231. DOI: 10.1364/OL.38.000229.
  2. Wu R, Benítez P, Zhang Y, Miñano JC. Influence of the characteristics of a light source and target on the Monge–Ampére equation method in freeform optics design. Opt Lett 2014; 39(3): 634-637. DOI: 10.1364/OL.39.000634.
  3. Oliker VI, Waltman P. Radially symmetric solutions of a Monge-Ampere equation arising in the reflector mapping problem. Proceedings of the UAB International Conference on Differential Equations and Mathematical Physics, Lecture Notes in Math 1987: 361-374.
  4. Moiseev MA, Doskolovich LL, Borisova KV, Byzov EV. Fast and robust technique for design of axisymmetric TIR optics in case of an extended light source. J Mod Opt 2013; 60(14): 1100-1106. DOI: 10.1080/09500340.2013.844864.
  5. Kravchenko SV, Moiseev MA, Doskolovich LL, Kazanskiy NL. Design of axis-symmetrical optical element with two aspherical surfaces for generation of prescribed irradiance distribution [in Russian]. Computer Optics 2011; 35(4): 467-472.
  6. Elmer WB. Optical design of reflectors. Appl Opt 1978; 17(7): 977-979. DOI: 10.1364/AO.17.000977.
  7. Moiseev MA, Doskolovich LL. Design of refractive spline surface for generating required irradiance distribution with large angular dimension. J Mod Opt 2010; 57(7): 536-544. DOI: 10.1080/09500341003764069.
  8. Bruneton A, Bäuerle A, Wester R, Stollenwerk J, Loosen P. High resolution irradiance tailoring using multiple freeform surfaces. Optics Express 2013; 21(9): 10563-10571. DOI: 10.1364/OE.21.010563.
  9. Kravchenko SV, Moiseev MA, Doskolovich LL. Design of refractive optical elements with two free-form surfaces for generation of prescribed illuminance distribution. Computer Optics 2014; 38(3): 435-442.
  10. Moiseev MA, Byzov EV, Kravchenko SV, Doskolovich LL. Design of LED refractive optics with predetermined balance of ray deflection angles between inner and outer surfaces. Optics Express 2015; 23(19): A1140-A1148. DOI: 10.1364/OE.23.0A1140.
  11. Talpur T, Herkommer A. TIR collimator designs based on point source and extended source methods. Proc SPIE 2015; 9626: 962906-962916. DOI: 10.1117/12.2190935.
  12. Moiseev MA, Doskolovich LL. Design of TIR optics generating the prescribed irradiance distribution in the circle region. JOSA A 2012; 29(9): 1758-1763. DOI: 10.1364/JOSAA.29.001758.
  13. Moiseev MA, Doskolovich LL, Borisova KV, Byzov EV. Fast and robust technique for design of axisymmetric TIR optics in case of an extended light source. J Mod Opt 2013; 60(14): 1100-1106. DOI: 10.1080/09500340.2013.844864.
  14. Tsai CY. Free-form surface design method for a collimator TIR lens. JOSA A 2016; 33(4): 785-792. DOI: 10.1364/JOSAA.33.000785.
  15. Chen C, Zhang X. Design of optical system for collimating the light of an LED uniformly. JOSA A 2014; 31(5): 1118-1125. DOI: 10.1364/JOSAA.31.001118.
  16. Chen JJ, Lin CT. Freeform surface design for a light-emitting diode-based collimating lens. Optical Engineering 2010; 49(9): 093001. DOI: 10.1117/1.3488046.
  17. Chen JJ, Wang TY, Huang KL, Liu TS, Tsai MD, Lin CT. Freeform lens design for LED collimating illumination. Optics Express 2012; 20(10): 10984-10995. DOI: 10.1364/OE.20.010984.
  18. Jiang J, To S, Lee WB, Cheung B. Optical design of a freeform TIR lens for LED streetlight. Optik 2010; 121(19): 1761-1765. DOI: 10.1016/j.ijleo.2009.04.009.
  19. Wu R, Benitez P, Zhang Y, Minano JC. Influence of the characteristics of a light source and target on the Monge–Ampére equation method in freeform optics design. Opt Lett 2014; 39(3): 634-637. DOI: 10.1364/OL.39.000634.
  20. Byzov EV, Moiseev MA, Doskolovich LL. Method for computation of LED secondary optics for automotive headlight. Computer Optics 2014; 38(4): 743-748.
  21. Byzov EV, Moiseev MA, Doskolovich LL, Kazanskiy NL. Design method for automotive high-beam LED optics. Proc SPIE 2015; 9629: 96290I. DOI: 10.1117/12.2191510.
  22. Ma D, Feng Z, Liang R. Freeform illumination lens design using composite ray mapping. Appl Opt 2015; 54(3): 498-503. DOI: 10.1364/AO.54.000498.
  23. Oliker VI, Kirkilionis M, Krömker S, Rannacher R, Tomi F. Mathematical aspects of design of beam shaping surfaces in geometrical optics. In book: Oliker VI, Kirkilionis M, Krömker S, Rannacher R, Tomi F, eds. Trends in Nonlinear Analysis. Springer; 2003: 197-224.
  24. Kochengin SA, Oliker VI. Computational algorithms for constructing reflectors. Computing and Visualization in Science 2003; 6: 15-21.
  25. Keys RG. Cubic convolution interpolation for digital image processing. IEEE Transactions on Acoustics, Speech and Signal Processing 1981; 29(6): 1153-1160. DOI: 10.1109/TASSP.1981.1163711.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; e-mail: ko@smr.ru; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20