An approach to synthesizing a 3D nanostructured glass-ceramic material based on intensive high-pressure torsion
A.V. Andrianova, I.L. Vinogradova, A.Kh. Sultanov, I.K. Meshkov, G.I. Abdrakhmanova, E.P. Grakhova, A.A. Ishmiyarov, L.Z. Yantilina

 

Federal State Budget Educational Institution of Higher Professional Education
"Ufa State Aviation Technical University", Ufa, Russia

Full text of article: Russian language.

Abstract:
The paper investigates the possibility of obtaining transparent bulk nanocrystalline pyroceram glass with a 3D-gradient of the refractive index for a mixer of an optical device to control the radiation pattern of an array antenna. The starting material was biphasic.  Operating modes are described and photographs of the resulting samples are presented. An optimal method of treatment is identified, comprising the selected heating and cooling modes of samples. The analysis of the degree of deformation due to nanostructural processing of the samples is conducted. The resulting material will be used for the development of fiber-optic telecommunications systems.

Keywords:
nanocrystalline material, pyroceram glass, refractive index, unique scientific installation, all-optical network.

Citation:
Andrianova AV, Vinogradova IL, Sultanov AKh, Meshkov IK, Abdrakhmanova GI, Grakhova EP, Ishmiyarov AA, Yantilina LZ. An approach to synthesizing a 3D nanostructured glass-ceramic material based on intensive high-pressure torsion. Computer Optics 2016; 40(4): 489-500. DOI: 10.18287/2412-6179-2016-40-4-489-500.

References:

  1. Mukherjee B. Optical Communication Networks – New York: Mc.Graw-Hill; 2005.
  2. Burla M, Marpaung DAI, Zhuang L, Khan MR, Leinse A, Beeker W, Hoekman M, Heideman RG, Roeloffzen CGH. Multiwavelength-Integrated Optical Beamformer Based on Wavelength Division Multiplexing for 2-D Phased Array Antennas. Journal of lightwave technology 2014; 32(20): 3509-3520. DOI: 10.1109/JLT.2014.2332426.
  3. Vidal B, Mengual T, Marti J. Fast Optical Beamforming Architectures for Satellite-Based Applications. Hindawi Publishing Corporation Advances in Optical Technologies 2012; 2012: 385409. DOI:10.1155/2012/385409.
  4. Zhuang L, Roeloffzen CGH, Meijerink A, Burla M, Marpaung DAI, Leinse A, Hoekman M, Heideman RG, van Zhuang W, Etten L. Novel Ring Resonator-Based Integrated Photonic Beamformer for Broadband Phased Array Receive Antennas – Part II: Experimental Prototype. Journal of lightwave technology 2010; 28(1): 19-31. DOI: 10.1109/JLT.2009.2032137.
  5. Sultanov AKh, Vinjgradova IL, Meshkov IK, Andrianova AV, Abdrakhmanova GI, Ishmiyarov AA, Yantilina LZ. A method for connecting antenna radiators to ROF systwms using an optical device and calculating its parameters [In Russian]. Computer Optics 2015; 39(5): 728-737. DOI: 10.18287/0134-2452-2015-39-5-728-737.
  6. Ams M, Marshall GD, Dekker P, Dubov M, Mezentsev VK, Bennion I, Withford MJ. Investigation of Ultrafast Laser–Photonic Material Interactions: Challenges for Directly Written Glass Photonics. IEEE journal of selected topics in quantum electronics 2008; 14(5): 1370-1381. DOI: 10.1109/JSTQE.2008.925809.
  7. Mezentsev VK, Oaks MV, Okhrimchuk AG, Karakuzu H, Boscolo S, Melnikov LA, Mazhirina Y, Lichkova NV, Zagorodnev VN. The use of femtosecond record for photonics mid-IR [In Russian] Proceedings of the 6th Russian workshop on fiber lasers 2014; 1: 111-112.
  8. Components fiber optics based on photonic crystal structures. Source: <http://laser-portal.ru/content_550>.
  9. Zamarre>o CR, Matias IR, Arregui FJ. Nanofabrication techniques applied to the development of novel optical fiber sensors based on nanostructured coatings. IEEE Sens J 2012; 12(8): 2699-2710. DOI: 10.1109/JSEN.2012.2199750.
  10. Valiev RZ, Aleksandrov IV. Nanostructure materials received by intensive plastic deformation [In Russian]. Moscow: “Logos” Publisher; 2000.
  11. Unique Science Equipment. Source: <https:// http://www.ckp-rf.ru/usu/327604/>.
  12. Sultanov AKh, Vinogradova IL, Salikhov AI. Electromagnetic wave propagation in transparent medium exposed to defor-mation changes [In Russian]. Herald of USATU 2006; 1: 170-175.
  13. Sultanov AKh., Vinogradova IL, Salikhov AI. Nonlinear refrective mode research for nanostructure pyroceramics [In Russian]. Nonlinear world 2009; 5: 360-369.
  14. Zefirov NS, Kuklov NN, eds. Chemistry encyclopedia in 5 volumes: Polimer – Tripsin [In Russian]. Moscow: Soviet Encyclopedia; 1995.
  15. Sultanov AKh, Vinogradova IL. Optical signals switch design approach controlled by light emission [In Russian]. Computer Optics 2005; 26: 56-64.
  16. Sultanov AKh, Vinogradova IL, Salikhov AI. Nonlinear fiber optic switch [In Russian]. Herald of USATU 2008; 1: 205-217.
  17. Straumal BB. Phase crossing at the boundary of grain [In Russian]. Moscow: “Nauka” Publisher; 2003.
  18. Valiev RZ, ed. Ultrafine grained materials produced by severe plastic deformation. Annales de Chimie. Spesial issue: Science des Materiaux 1996; 21: 369-554.
  19. Alexandrov IV, Zhang K, Kilmametov AR, Lu K, Valiev RZ. The X-ray characterization of the ultrafine-grained Cu pro-cessed by defferent methods of severe plastic deformation. Mater Sci Eng A 1997, 234-236: 331-334. DOI: 10.1016/S0921-5093(97)00135-4.
  20. Epifanov GI. Solid body physics [In Russian]. Moscow: “Vysshaya Shkola” Publisher; 1965.
  21. CJSC Obninsk science technical company “Technology”. Source: <https:// www.technologiya.ru>.
  22. Sultanov AH, Kanakov VI, Vinogradova IL. Results of experimental research deformed transparent specimens. Proc SPIE 2004; 5485: 56-62. DOI: 10.1117/12.564919.
  23. The site for collective use centers – CCU at BSU Source: <http://www.ckprf.ru/ckp/?arrFilter_ff%5BNA­ME%5D=&arrFilter_pf%5BFEDERAL%5D=&arrFilter_pf%5BSUPERCOMP%5D=&arrFilter_pf%5BSUPPORTED%5D=&arrFilter_pf%5BSUPPORTED20%5D=&arrFilter_pf%5BBASE_ORG_LINK%5D=82949&arrFilter_pf%5BPA­RENT%5D=2919&arrFilter_pf%5BPN%5D=&arrFilter_pf%5BFO%5D=104&arrFilter_pf%5BREGION_LIST%5D=&set_filter=Y&set_filter=%D0%9F%D0%BE%D0%B8%D1%81%D0%BA>.
  24. Hirth JP, Lothe J. Theory of Dislocations. NY: McGraw-Hill Book Company, Inc.; 1968.
  25. Kuvyrkin GN. Thermomechanics of deformed solid body with high intensity pressure [In Russian]. Moscow: “MSTU” Publisher; 1993.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; e-mail: ko@smr.ru; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20