Onboard processing of hyperspectral data in the remote sensing systems based on hierarchical compression
M.V. Gashnikov, N.I. Glumov


Samara National Research University, Samara, Russia,
Image Processing Systems Institute f RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Samara, Russia

Full text of article: Russian language.

The article is devoted to solving the problem of onboard processing of hyperspectral data for subsequent transmission via the communication channels in systems of remote sensing. A compression method based on the hierarchical grid interpolation is used as the basic algorithm of data compression necessary to reduce the amount of transmitted information. In this article, the method is adapted for onboard data processing. The specificity of hyperspectral imaging is taken into account when developing an algorithm of stabilization of the rate of compressed data formation. Computational experiments show that the efficiency of the proposed algorithms is sufficient for the transmission of hyperspectral remote sensing data under the limited capacity of the buffer memory and the communication channel bandwidth.

hyperspectral images, data compression, method of hierarchical grid interpolation, on-Board processing, stabilization of the rate of data stream formation.

Gashnikov MV, Glumov NI. Onboard processing of hyperspectral data in the remote sensing systems based on hierarchical compression. Computer Optics 2016; 40(4): 543-551. DOI: 10.18287/2412-6179-2016-40-4-543-551.


  1. Chang C. Hyperspectral Data Processing: Algorithm Design and Analysis. Hoboken, HJ: John Wiley & Sons, Inc; 2013. ISBN: 978-0-471-69056-6.
  2. Showengerdt RA. Remote Sensing – Models and Methods for Image Processing. New York: Academic Press; 1997.
  3. Chang C. Hyperspectral imaging: techniques for spectral detection and classification. New York: Springer Science+Business Media; 2003. ISBN 978-1-4419-9170-6.
  4. Borengasser M., Hungate W, Watkins R. Hyperspectral Remote Sensing – Principles and Applications. Boka Raton: CRC Press; 2004. ISBN 978-1-56670-654-4.
  5. Chang C. Hyperspectral data exploitation: theory and applications. Wiley-Interscience; 2007. ISBN: 978-0-471-74697-3.
  6. Gashnikov MV, Glumov NI, Myasnikov VV, Chernov AV, Ivanova EV. Regional Geographic Information Systems for Gas Network Monitoring. Pattern Recognition and Image Analysis 2015; 25(3): 418-422. DOI: 10.1134/S1054661815030062.
  7. Chanussot J, Crawford M, Kuo B. Foreword to the Special Issue on Hyperspectral Image and Signal Processing. IEEE Transactions on Geoscience and Remote Sensing 2010; 48(11): 3871-3876. DOI: 10.1109/TGRS.2010.2085313.
  8. Chang C, Chiang S. Anomaly detection and classification for hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing 2002; 40(6): 1314-1325. DOI: 10.1109/TGRS.2002.800280.
  9. Benz U, Hofmann P, Willhauck G, Lingenfelder I, Heynen M. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS Journal of Photogrammetry and Remote Sensing 2004; 58(3): 239-258. DOI: 10.1016/j.isprsjprs.2003.10.002.
  10. Gashnikov MV, Glumov NI. Hierarchical compression for hyperspectral image storage. Computer Optics 2014; 38(3): 482-488.
  11. Gashnikov MV, Glumov NI. Hyperspectral images repository using a hierarchical compression. 23-rd International Conference on Computer Graphics, Visualization and Computer Vision proceeding 2015; 1-4. ISBN 978-80-86943-67-1. ISSN 2464-4617.
  12. Salomon D. Data Compression. The Complete Reference. London: Springer-Verlag; 2007. ISBN: 978-1-84628-602-5. DOI: 10.1007/978-1-84628-603-2.
  13. Vatolin D, Ratushnyak A, Smirnov M, Yukin V. Data compression methods. Archive program architecture, image and video compression[In Russian]. Moscow: “DIALOG-MIFI” Publisher; 2002. ISBN: 5-86404-170-X.
  14. Pratt W. Digital image processing. 4th ed. Hoboken, NJ: John Wiley & Sons, Inc; 2007. ISBN: 978-0-47176-777-0. DOI: 10.1002/0470097434.
  15. Soifer VA, Chernov AV, Chernov VM, Chicheva MA, Fursov VA, Gashnikov MV, Glumov NI, Ilyasova NY, Khramov AG, Korepanov AO, Kupriyanov AV, Myasnikov EV, Myasnikov VV, Popov SB, Sergeyev VV. Computer Image Processing, Part II: Methods and algorithms. Ed by Soifer VA. VDM Verlag; 2010.
  16. Gashnikov MV. Parameterization of nonlinear Greham predictor for digital image compression. Computer Optics 2016; 40(2): 225-231. DOI: 10.18287/2412 -6179-2016-40-2-225-231.
  17. Woods E, Gonzalez R. Digital Image Processing. 3ed. Prentice Hall; 2007. ISBN 978-0-13168-728-8.
  18. Wallace G. The JPEG Still Picture Compression Standard. Communications of the ACM 1991; 34(4): 30-44. DOI: 10.1109/30.125072.
  19. Gashnikov MV, Glumov NI. Hierarchical grid interpolation for hyperspectral image compression. Computer Optics 2014; 38(1): 87-93.
  20. Gashnikov MV, Glumov NI. Hierarchical GRID Interpolation under Hyperspectral Images Compression. Optical Memory and Neural Networks (Information Optics) 2014; 23(4): 246-253. DOI: 10.3103/S1060992X14040031.
  21. Lin S, Costello D. Error Control Coding: Fundamentals and Applications, second edition. Englewood Cliffs, NJ: Prentice-Hall, Inc; 2004. ISBN: 978-0130426727.
  22. Gashnikov MV, Glumov NI, Sergeyev VV. Regional Geographic Information Systems for Gas Network Monitoring. Pattern Recognition and Image Analysis 2007; 17(1): 79-81. DOI: 10.1134/S1054661807010087.
  23. AVIRIS Data – Ordering Free AVIRIS Standard Data Products. Jet Propulsion Laboratory. Source: <http://aviris.jpl.nasa.gov/data/free_data.html>.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; e-mail: ko@smr.ru; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20