3D simulation of focusing a laser beam by a dielectric conical microaxicon
S.A. Degtyarev


Image Processing Systems Institute оf RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Samara, Russia,
Samara National Research University, Samara, Russia

Full text of article: Russian language.

In this work, using a finite element method implemented we simulate in the Comsol software focusing a TE-polarized Gaussian beam by 3D dielectric conical microaxicon tapers with smaller-than-30-degrees vertex angles. The simulation results have shown that, as is the case with the 2D axicons, with minor changes in a vertex angle, the 3D axicon can alternatively show either focusing or defocusing properties. However, the angle intervals in which the 2D and 3D axicons show focusing or defocusing  properties are different.

dielectric conical axicon, total internal reflection (TIR), real and imaginary focus, finite element method.

Degtyarev SA. 3D simulation of focusing a laser beam by a dielectric conical microaxicon. Computer Optics 2016, 40(4): 588-593. DOI: 10.18287/2412-6179-2016-40-4-588-593.


  1. Novotny L, Hecht B. Principles of Nano-Optics. Cambridge: Cambridge University Press; 2006. DOI: 10.1017/CBO9780511813535.
  2. Zhu B, Stiens J, Matvejev V, and Vounckx R. Inexpensive and easy fabrication of multi-mode tapered dielectric circular probes at millimeter wave frequencies. Progress In Electromagnetics Research 2012; 126: 237-254. DOI: 10.2528/PIER12010203.
  3. Ustinov AV, Khonina SN. Calculating the complex transmission function of refractive axicons. Optical Memory and Neural Networks (Information Optics) 2012; 21(3): 133-144. DOI: 10.3103/S1060992X1203006X.
  4. McLeod JH. The axicon: a new type of optical element. J Opt Soc Am 1954; 44: 592-597. DOI: 10.1364/JOSA.44.000592.
  5. Jaroszewicz Z, Burvall A, Friberg AT. Axicon – the most important optical element. Optics & Photonics News 2005; 16(4): 34-39. DOI: 10.1364/OPN.16.4.000034.
  6. Durnin J, Miceli JJ Jr, Eberly JH. Diffraction-free beams. Physical Review Letters 1987; 58: 1499-1501. DOI: 10.1103/PhysRevLett.58.1499.
  7. McGloin D, Dholakia K. Bessel beams: diffraction in a new light. Contemporary Physics 2005; 46(1): 15-28. DOI: 10.1080/0010751042000275259.
  8. Denk W, Pohl DW. Near-field optics: microscopy with nanometer-size fields. J Vac Sci Technol 1991; 9(2): 510-513. DOI: 10.1116/1.585558.
  9. Babadjanian AJ, Margaryan NL, Nerkararyana KhV. Superfocusing of surface polaritons in the conical structure. J Appl Phys 2000; 87(8): 3785-3788. DOI: 10.1063/1.372414.
  10. Goncharenko AV, Chang H-C, Wang J-K. Electric near-field enhancing properties of a finite-size metal conical nano-tip. Ultramicroscopy 2007; 107(2-3): 151-157. DOI: 10.1016/j.ultramic.2006.06.004.
  11. Antosiewicz TJ, Wróbel P, Szoplik T. Nanofocusing of radially polarized light with dielectric-metal-dielectric probe.  Optics Express 2009; 17(11): 9191-9196. DOI: 10.1364/OE.17.009191.
  12. Choo H, Kim M-K, Staffaroni M, Seok TJ, Bokor J, Cabrini S, Schuck PJ, Wu MC, Yablonovitch E. Nano-focusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper. Nature Photonics 2012; 6(12): 838-844. DOI: 10.1038/nphoton.2012.277.
  13. Berweger S, Atkin JM, Olmon RL, Raschke MB. Light on the tip of a needle: plasmonic nanofocusing for spectroscopy on the nanoscale. J Phys Chem Lett 2012; 3(7): 945-952. DOI: 10.1021/jz2016268.
  14. Stockle RM, Schaller N, Deckert V, Fokas V, Zenobi R. Brighter near-field optical probes by means of improving the optical destruction threshold. Journal of Microscopy 1999; 194(2-3): 378-382. DOI: 10.1046/j.1365-2818.1999.00524.x.
  15. Kuchmizhak AA, Kulchin YN, Vitrik OB, Savchuk AG, Makarov SV, Kudryashov SI, Ionin AA. Optical apertureless fiber microprobe for surface laser modification of metal films with sub-100 nm resolution. Optics Communications 2013; 308: 125-129. DOI: 10.1016/j.optcom.2013.06.051.
  16. Yakunin S, Heitz J. Microgrinding of lensed fibers by means of a scanning-probe microscope setup. Applied Optics 2009; 48(32): 6172-6177. DOI: 10.1364/AO.48.006172.
  17. Mohanty SK, Mohanty KS, Berns MW. Organization of microscale objects using a microfabricated optical fiber. Optics Letters 2008; 33(18): 2155-2157. DOI: 10.1364/OL.33.002155.
  18. Ustinov AV, Degtyarev SA, Khonina SN. Diffraction by a conical axicon considering multiple internal reflections. Computer Optics 2015; 39(4): 500-507. DOI: 10.18287/0134-2452-2015-39-4-500-507.
  19. De A, Attimarad GV. Numerical analysis of two dimensional tapered dielectric waveguide. Progress In Electromagnetics Research 2004; 44: 131-142. DOI: 10.2528/PIER03062001.
  20. Degtyarev SA, Khonina SN. Transmission of focused light signal through an apertured probe of a near-field scanning microscope. Pattern Recognition and Image Analysis 2015; 25(2): 306-313. DOI: 10.1134/S1054661815020078.
  21. Khonina SN, Nesterenko DV, Morozov AA, Skidanov RV, Soifer V.A. Narrowing of a light spot at diffraction of linearly-polarized beam on binary asymmetric axicons. Optical Memory and Neural Networks (Information Optics) 2012; 21(1): 17-26. DOI: 10.3103/S1060992X12010043.
  22. Khonina SN, Karpeev SV, Alferov SV, Savelyev DA, Laukkanen J, Turunen J. Experimental demonstration of the generation of the longitudinal E-field component on the optical axis with high-numerical-aperture binary axicons illuminated by linearly and circularly polarized beams. Journal of Optics 2013; 15(8): 085704. DOI: 10.1088/2040-8978/15/8/085704.
  23. Alferov SV, Khonina SN, Karpeev SV. Study of polarization properties of fiber-optics probes with use of a binary phase plate. J Opt Soc Am A 2014; 31(4): 802-807. DOI: 10.1364/JOSAA.31.000802.
  24. Khonina SN, Savelyev DA. High-aperture binary axicons for the formation of the longitudinal electric field component on the optical axis for linear and circular polarizations of the illuminating beam. Journal of Experimental and Theoretical Physics 2013; 117(4): 623-630. DOI: 10.1364/JOT.83.000197.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; e-mail: ko@smr.ru; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20