Measuring the thickness of Z-cut uniaxial crystals based on Bessel laser beams
V.D. Paranin


Samara National Research University, Samara, Russia

Full text of article: Russian language.

An optical method for measuring the thickness of z-cut uniaxial crystals is proposed. The method uses a periodic mutual conversion of zero- and second-order Bessel beams observed during their propagation along the optical axis of a uniaxial crystal. The paper presents the theoretical background and features of the practical implementation of the measuring method. The applicability of the method for measuring thicknesses ranging from tens of micrometers up to tens of millimeters is shown for a lithium niobate crystal.

Bessel beam, birefringence crystal, lithium niobate, thickness measurement, tolerance, image processing.

Paranin VD. Measuring the thickness of z-cut uniaxial crystals based on Bessel laser beams. Computer Optics 2016, 40(4): 594-599. DOI: 10.18287/2412-6179-2016-40-4-594-599.


  1. Sonin AS, Vasilevskaya AS. Electrooptical crystals [in Russian]. Moscow: “Atomizdat” Publisher; 1971.
  2. Kuz’minov YuS. Electrooptical and Nonlinear Optical Crystals of Lithium Niobate [in Russian]. Moscow: “Nauka” Publisher; 1987.
  3. Shubnikov AV. Principles of Optical Crystallography. New York: Consultants Bureau Publisher; 1960.
  4. Chetverikov SD. Optical Methods for Crystals Studying [in Russian]. Moscow: “Gosgeolizdat” Publisher; 1949.
  5. Paranin VD. Rotation Method for the Measurement of Thickness of Z-cut Uniaxial Crystals. Technical Physics 2015; 85(12): 120-123.
  6. Khilo NA, Petrova ES, Ryzhevich AA. Transformation of the order of Bessel beams in uniaxial crystals. Quantum electron 2001; 31(1): 85-89. DOI: 10.1070/QE2001v031n01ABEH001897.
  7. Khilo NA. Diffraction and order conversion of Bessel beams in uniaxial crystals. Optics Communications 2012; 285(5): 503-509. DOI: 10.1016/j.optcom.2011.11.014.
  8. Zusin DH, Maksimenka R, Filippov VV, Chulkov RV, Perdrix M, Gobert O, Grabtchikov AS. Bessel beam transformation by anisotropic crystals.JOSA A 2010; 27(8): 1828-1833. DOI: 10.1364/JOSAA.27.001828.
  9. Loussert C, Brasselet E.Efficient scalar and vectorial singular beam shaping using homogeneous anisotropic media. Opt Lett 2010; 35(1): 7-9. DOI: 10.1364/OL.35.000007.
  10. Fadeyeva TA, Volyar AV. Extreme spin-orbit coupling in crystal-tra­veling paraxial beams. JOSA A 2010; 27(3): 381-389. DOI: 10.1364/JOSAA.27.000381.
  11. Khonina SN, Morozov AA, Karpeev SV. Effective transformation of a zero-order Bessel beam into a second-order vortex beam using a uniaxial crystal. Laser Physics 2014; 24(5): 056101. DOI: 10.1088/1054-660X/24/5/056101.
  12. Khonina SN, Kharitonov SI. Comparative investigation of nonparaxial mode propagation along the axis of uniaxial crystal. Journal of Modern Optics 2015; 62(2): 125-134. DOI: 10.1080/09500340.2014.959085.
  13. Turpin A, Loiko YV, Kalkandjiev TK, Mompart J. Light propagation in biaxial crystals. Journal of Optics 2015; 17(6): 065603. DOI: 10.1088/2040-8978/17/6/065603.
  14. Khonina SN, Karpeev SV, Alferov SV, Soifer VA. Generation of cylindrical vector beams of high orders using uniaxial crystals. Journal of Optics 2015; 17(6): 065001. DOI: 10.1088/2040-8978/17/6/065001.
  15. Khonina SN, Zoteeva OV, Kharitonov SI. Sharp focusing of laser beams in anisotropic uniaxial crystals. Journal of Optical Technology 2015; 82(4): 212-219. DOI: 10.1364/JOT.82.000212.
  16. Zhang S, Asoubar D, Wyrowski F. Rigorous modeling of laser light propagation through uniaxial and biaxial crystals. Proc SPIE 2015; 9346: 93460N. DOI: 10.1117/12.2079534.
  17. Khonina SN, Paranin VD, Ustinov AV, Krasnov AP. Astigmatic transformation of Bessel beams in a uniaxial crystal. Optica Applicata 2016; XLVI(1): 5-18. DOI: 10.5277/oa160101.
  18. Khonina SN, Karpeev SV, Morozov AA, Paranin VD. Implementation of ordinary and extraordinary beams interference by application of diffractive optical elements. Journal of Modern Optics 2016; 63(13): 1239-1247. DOI: 10.1080/09500340.2015.1137368.
  19. Fedotowsky A, Lehovec K. Far Field Diffraction Patterns of Circular Gratings. Applied Optics 1974; 13(11): 2638-2642. DOI: 10.1364/AO.13.002638.
  20. Vasara A, Turunen J, Friberg AT. Realization of general nondiffracting beams with computer-generated holograms. Journal of the Optical Society of America A 1989; 6(11): 1748-1754. DOI: 10.1364/JOSAA.6.001748.
  21. Khonina SN, Kotlyar VV. Bessel-mode formers. Proc SPIE 1994; 2363: 184-190. DOI: 10.1117/12.199633.
  22. Khonina SN, Savelyev DA. High-aperture binary axicons for the formation of the longitudinal electric field component on the optical axis for linear and circular polarizations of the illuminating beam. Journal of Experimental and Theoretical Physics 2013; 117(4): 623-630. DOI: 10.1134/S1063776113120157.
  23. Novtskii PV, Zograf IA. Estimating the errors of measurement results [in Russian]. Leningrad: “Energoizdat” Publisher; 1991.
  24. Poleshchuk AG. Errors of diffractive structure formation by laser thermochemical writing. Optoelectronics Instrumentation and Data Processing 2003; 39(6): 34-39.
  25. Paranin VD, Karpeev SV, Khonina SN. Control of the formation of vortex Bessel beams in uniaxial crystals by varying the beam divergence. Quantum electron 2016; 46(2): 163-168. DOI: 10.1070/QEL15880.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; e-mail:; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20