Whispering gallery modes in a dielectric cylinder with circular cross-section
D.A. Kozlov

 

Samara National Research University, Samara, Russia,
Image Processing Systems Institute оf RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Samara, Russia

Full text of article: Russian language.

Abstract:
As a result of diffraction of a plane monochromatic TE-wave by an ideal homogeneous dielectric cylinder with a wavelength-scale resonant radius, two on-axis near-surface focal spots are generated at the cylinder output. The first subwavelength focal spot is formed by a whispering gallery mode. Its peak intensity is 50 times the intensity of the incident plane wave, and its full width at half maximum can reach 0.155 of the incident wavelength. The second focal spot intensity is half as much as that of the first one. This focal spot, which is also known as the photonic nanojet, is stretched towards the optical axis. Its width is 0.44 of the wavelength, while the length can reach two wavelengths. In this paper, we numerically analyze the focusing ability of a two-layered cylinder and effects of the material absorption on the results of focusing of the whispering gallery mode.

Keywords:
dielectric cylinder, whispering gallery modes, subwavelength light focusing.

Citation:
Kozlov DA. Whispering gallery modes in a dielectric cylinder with circular cross-section. Computer Optics 2017; 41(3): 377-384. DOI: 10.18287/2412-6179-2017-41-3-377-384.

References:

  1. Chen Z, Taflove A, Backman V. Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique. Optics Express 2004; 12(7): 1214-1220. DOI: 10.1364/OPEX.12.001214
  2. Geints YE, Zemlyanov AA. Modeling sparially localized photonic nanojets from phase diffraction gratings. J Appl Phys 2016; 119(15): 153101. DOI: 10.1063/1.4946846.
  3. Geints YE, Zemlyanov AA, Panina EK. Localized light jets from radially symmetric nonspherical dielectric microparticles. Atmospheric and Oceanic Optics 2015; 28(5): 436-440. DOI: 10.1134/S1024856015050048.
  4. Mao X, Yang Y, Dai H, Luo D, Yao B, Yan Sh. Tunable photonic nanojet formed by generalized Luneburg lens. Optics Express 2015; 23(20): 26426-26433. DOI: 10.1364/OE.23.026426.
  5. Geints YE, Zemlyanov AA, Panina EK. Photonic nanojet calculations in layered radially inhomogeneous micrometer-sized spherical particles. J Opt Soc Am B 2011; 28(8): 1825-1830. DOI: 10.1364/JOSAB.28.001825.
  6. Han L, Han Y, Gouesbet G, Wang J, Gréhan G. Photonic jet generated by spheroidal particle with Gaussian-bean illumination. J Opt Soc Am B 2014; 31(7): 1476-1483. DOI: 10.1364/JOSAB.31.001476.
  7. Grojo D, Sandeau N, Boarino L, Constantinescu C, De Leo N, Laus M, Sparnacci K. Bessel-like photonic nanojets from core-shell subwavelength spheres. Opt Lett 2014; 39(13): 3989-3992. DOI: 10.1364/OL.39.003989.
  8. Shen Y, Wang LV, Shen J-T. Ultralong photonic nanojet formed by a two-layer dielectric microsphere. Opt Lett 2014; 39(14): 4120-4123. DOI: 10.1364/OL.39.004120.
  9. Gu G, Zhou R, Chen Z, Xu H, Cai G, Hong M. Super-long photonic nanojet generated from liquid-filled hollow microcylinder. Opt Lett 2015; 40(4): 625-628. DOI: 10.1364/OL.40.000625.
  10. Liu C-Y, Chang L-J. Photonic nanojet modulation by elliptical microcylinders. Optik 2014; 125(15): 4043-4046. DOI: 10.1016/j.ijleo.2014.01.116.
  11. Xu BB, Jiang WX, Yu GX, Ciu TJ. Annular focusing lens based on transformation optics. J Opt Soc Am A 2014; 31(5): 1135-1140. DOI: 10.1364/JOSAA.31.001135.
  12. McCloskey D, Wangm JJ, Donegan JF. Low divergence photonic nanojets from Si3N4 microdisks. Optics Express 2012; 20(1): 128-140. DOI: 10.1364/OE.20.000128.
  13. Foreman MR, Swaim JD, Vollmer F. Whispering gallery mode sensors. Adv Opt Photonics 2015; 7(2): 168-240. DOI: 10.1364/AOP.7.000168.
  14. Gorodetsky ML, Savchenkov AA, Ilchenko VS. Ultimate Q of optical microsphere resonators. Opt Lett 1996; 21(7): 453-455. DOI: 10.1364/OL.21.000453.
  15. Geints YE, Zemlyanov AA, Panina EK. Photonic jets from resonantly excited transparent dielectric microspheres. J Opt Soc Am B 2012; 29(4): 758-762. DOI: 10.1364/JO­SAB.29.000758.
  16. Kozlov DA, Kotlyar VV. Resonant laser focus light by uniformity dielectric microcylinder [In Russian]. Computer Optics 2014; 38(3): 394-396.
  17. Kotlyar VV, Kovalev AA, Kozlov DA. Calculating the resonance radius of a dielectric cylinder under illumination by a plane TE-wave. Optic 2016; 127(8). DOI: 10.1016/j.ijleo.2016.01.058.
  18. Soifer VA, ed. Diffractive nanophotonics. Boca Raton, USA: CRC Press; 2014. ISBN: 978-1-46659-069-4.
  19. Jitian S. Determination of optical constants of polystyrene from IR reflection-absorption spectra. Analele Universitatii "Eftimie Murgu Resita" 2011; XVIII(1): 41-48.
  20. Inagaki T, Arakawa ET, Hamm RN, Williams MW. Optical properties of polystyrene from the near-infrared to the X-ray region and convergence of optical sum rules. Phys Rev B 1977; 15(6): 3243-3253. DOI: 10.1103/Phys­RevB.15.3243.
  21. Sharma D, Sharma P, Singh AKr, Thakur N. Comparison of optical properties of spun cast polystyrene and iodine doped films. Optoelectronics and Advanced Materials – Rapid Communications 2009; 3(4): 371-375.
  22. Kanuchová Z, Baratta GA, Grozzo M, Strazzulla G. Space weathering of asteroidal surfaces. Influence on the UV-Vis spectra. Astronomy & Astrophysics 2010; 517: A60. DOI: 10.1051/0004-6361/201014061.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; e-mail: ko@smr.ru; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20