A spirally rotating backward flow of light
Kotlyar V.V., Nalimov A.G.


Samara National Research University, 34, Moskovskoye shosse, Samara, 443086, Samara, Russia,
IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Molodogvardeyskaya 151, 443001, Samara, Russia

Using Richards-Wolf formulas, we show that when a left-hand circularly polarized optical vortex with the topological charge 3 is sharply focused in an aplanatic system, a backward near-axis energy flow is observed in the focal plane. While being zero on the axis, the backward flow is only 2-3 times smaller in magnitude than the incident energy flow coming to the focus. It is also shown that near the optical axis the reverse flow propagates spiraling counter-clockwise about the optical axis. The presence of the near-axis backward flow of energy is also shown by the FDTD-aided numerical simulation of diffraction of a circularly polarized plane wave by a third-order spiral zone plate with the NA ≈ 1. A Rayleigh microparticle captured in the focus vicinity is expected to move in the opposite direction to the beam propagation.

backward energy flow, optical vortex, rotating beams, Umov–Poynting vector.

Kotlyar VV, Nalimov AG. A spirally rotating backward flow of light. Computer Optics 2018; 42(4): 527-533. DOI: 10.18287/2412-6179-2018-42-4-527-533.


  1. Richards B, Wolf E. Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system. Proc R Soc A 1959; 253(1274): 358-379. DOI: 10.1098/rspa.1959.0200.
  2. Novitsky AV, Novitsky DV. Negative propagation of vector Bessel beams. J Opt Soc Am A 2007; 24(9): 2844-2849. DOI: 10.1364/JOSAA.24.002844.
  3. Monteiro PB, Neto PAM, Nussenzveig HM. Angular momentum of focused beams: Beyond the paraxial approximation. Phys Rev A 2009; 79(3): 033830. DOI: 10.1103/PhysRevA.79.033830.
  4. Sukhov S, Dogariu A. On the concept of “tractor beams”. Opt Lett 2010; 35(22): 3847-3849. DOI: 10.1364/OL.35.003847.
  5. Kotlyar VV, Nalimov AG. A vector optical vortex generated and focused using a metalens. Computer Optics 2017; 41(5): 645-654. DOI: 10.18287/2412-6179-2017-41-5-645-654.
  6. Mitri FG. Reverse propagation and negative angular momentum density flux of an optical nondiffracting nonparaxial fractional Bessel vortex beam of progressive waves. J Opt Soc Am A 2016; 33(9): 1661-1667. DOI: 10.1364/JOSAA.33.001661.
  7. Salem MA, Bagci H. Energy flow characteristics of vector X-wave. Opt Express 2011; 19(9): 8526-8532. DOI: 10.1364/OE.19.008526.
  8. Vaveliuk P, Martinez-Matos O. Negative propagation effect in nonparaxial Airy beams. Opt Express 2012; 20(24): 26913-26921. DOI: 10.1364/OE.20.026913.
  9. Berry MV. Quantum backflow, negative kinetic energy, and optical retro-propagation. J Phys A: Mathem & Theor 2010; 43(41): 415302. DOI: 10.1088/1751-8113/43/41/415302.
  10. Kotlyar VV, Nalimov AG, Stafeev SS. The near-axis backflow of energy in a tightly focused optical vortex with circular polarization. Computer Optics 2018; 42(3): 392-400. DOI: 10.18287/2412-6179-2018-42-3-392-400.
  11. Chen B, Po J. Tight focusing of elliptically polarized vortex beams. Appl Opt 2009; 48(7): 1288-1294. DOI: 10.1364/AO.48.001288.
  12. Dogariu A, Sukhov S, Sáenz J. Optically induced 'negative forces'. Nat Photon 2012; 7(1): 24-27. DOI: 10.1038/nphoton.2012.315.
  13. Shvedov V, Davoyan AR, Hnatovsky C, Engheta N, Krolikowski W. A long-range polarization-controlled optical tractor beam. Nat Photon 2014; 8(11): 846-850. DOI: 10.1038/nphoton.2014.242.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20