Numerical modeling of a influence of a nanoparticle pair on the electromagnetic field in the near zone by the vector finite elements method
Kurachka K.S.

 

Sukhoi State Technical University of Gomel, Gomel, Republic of Belarus

Abstract:
Here we propose a mathematical model based on a vector finite-element method for modeling the distribution of the electromagnetic field in the near zone of spherical particles. This model has allowed us to develop algorithms for the appropriate software. The verification of the model shows that the discrepancy between the research results of the proposed model and the available calculation results based on analytical formulas derived from the Mie theory for homogeneous spherical nanoparticles does not exceed 10 percent.
Calculations were carried out to determine the relative positions of a pair of metal nanoparticles at which the intensity of the electromagnetic field reaches the maximum value in the near zone. The advantage of the proposed mathematical model and approach consists in the use of tetrahedrons as finite-elements. The tetrahedron finite-elements allow one to approximate the heterogeneous structure of the nanomaterial with the accuracy sufficient for the practical use. Furthermore, in this way the continuity of the tangential component of the electromagnetic field in the entire calculation region can be achieved.

Keywords:
mathematical modeling, numerical approximation and analysis, light scattering by particles, electromagnetic field, vector finite element method.

Citation:
Kurachka KS. Numerical modeling of a influence of a nanoparticle pair on the electromagnetic field in the near zone by the vector finite elements method. Computer Optics 2018; 42(4): 542-549. DOI: 10.18287/2412-6179-2018-42-4-542-549.

References:

  1. Krasnok AE, Maksymov IS, Denisyuk AI, Belov PA, Miroshnichenko AE, Simovskii CR, Kivshar YuS. Optical nanoantennas. Phys Usp 2013; 56(6): 539-564. DOI: 10.3367/UFNe.0183.201306a.0561.
  2. Alexseenko AA, Boiko AA, Poddenezjniy EN. Functional materials based on silica, obtained by sol-gel process [In Russian]. Gomel: “Sukhoi State Technical University of Gomel” Publisher; 2008. ISBN: 978-985-420-725-4.
  3. Klimov VV. Nanoplasmonics. Singapore: Pan Stanford Publishing Pte Ltd; 2014. ISBN: 978-981-4267-16-8.
  4. Ibragimov IM, Kovshov AN, Nazarov YF. Fundamentals of computer modeling of nanosystems [In Russian]. Saint-Pe­tersburg: “Lan” Publisher; 2010. ISBN: 978-5-8114-1032-3.
  5. Van de Hulst HC. Light scattering by small particles. New York: John Wiley & Sons Inc; 1957.
  6. Tamaru H, Kuwata H, Miyazaki HT, Miyano K. Resonant light scattering from individual Ag nanoparticles and particle pairs. Appl Phys Lett 2002; 80(10): 1826-1828. DOI: 10.1063/1.1461072.
  7. Rechberger W, Hohenau A, Leitner A, Krenn JR, Lamprecht B, Aussenegg FR. Optical properties of two interacting gold nanoparticles. Opt Commun 2003; 220(1-3): 137-141. DOI: 10.1016/S0030-4018(03)01357-9.
  8. Kurochka KS, Asenchik OD, Starodubtsev EG. Program-software complex for calculations of the electromagnetic field distribution in the near field of dielectric and metal nanoparticles [In Russian]. Doklady BGUIR 2013; 3(81): 64-70.
  9. Smajic J, Hafner C, Raguin L, Tavzarashvili K, Mishrikey M. Comparison of numerical methods for the analysis of plasmonic structures. J Comp Theor Nanosci 2009; 6(3): 763-774. DOI: 10.1166/jctn.2009.1107.
  10. Karamehmedovic , Schuh R, Schmidt V, Wriedt Th, Matyssek Ch, Hergert W, Stalmashonak A, Seifert G, Stranik O. Comparison of numerical methods in near-field computation for metallic nanoparticles. Opt Express 2011; 19(9): 8939-8953. DOI: 10.1364/OE.19.008939.
  11. Sadiku MNO. Numerical techniques in electromagnetics. 2nd ed. London: CRC Press; 2003.
  12. Taflove A, Hagnes SC. Computational electrodynamics: The finite-difference time-domain method. 3rd ed. Boston, London: Artech House Publishers; 2005. ISBN: 978-1-58053-832-9.
  13. Mishchenko MI, Travis LD, Mackowski DW. T-matrix computations of light scattering by nonspherical particles: A review. J Quant Spectrosc Radiat Transfer 1996; 55(5): 535-575. DOI: 10.1016/0022-4073(96)00002-7.
  14. Draine BT, Flatau PJ. Discrete dipole approximation for scattering calculations. J Opt Soc Am A 2004; 11(4): 1491-1499. DOI: 10.1364/JOSAA.11.001491.
  15. Jin J-M. Theory and computation of electromagnetic fields. Hoboken, NJ: John Wiley & Sons; 2010. ISBN: 978-0-470-53359-8.
  16. Monk P. Finite element methods for Maxwell's equations. Oxford: Oxford University Press; 2003. ISBN: 978-0-19-850888-5.
  17. Ringler M, Schwemer A, Wunderlich M, Nichtl A, Kürzinger K, Klar TA, Feldmann J. Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators. Phys Rev Lett 2008; 100(20): 203002. DOI: 10.1103/PhysRevLett.100.203002.
  18. Xu H-X. A new method by extending Mie theory to calculate local field in outside/inside of aggregates of arbitrary spheres. Phys Lett A 2003; 312(5-6): 411-419. DOI: 10.1016/S0375-9601(03)00687-X.
  19. Xiao JJ, Huang JP, Yu KW. Optical response of strongly coupled metal nanoparticles in dimer arrays. Phys Rev B 2005; 71: 045404. DOI: 10.1103/PhysRevB.71.045404.
  20. Nordlander P, Oubre C, Prodan E, Li K, Stockman MI. Plasmon hybridization in nanoparticle dimers. Nano Lett 2004; 4(5): 899-903. DOI: 10.1021/nl049681c.
  21. Doicu A, Wriedt T, Eremin YA. Light scattering by systems of particles: Null-field method with discrete sources: Theory and programs. Berlin, Heidelberg, New York: Springer; 2006. ISBN: 978-3-540-33696-9.
  22. Mackowski DW, Mishchenko MI. A multiple sphere T-matrix Fortran code for use on parallel computer clusters. Journal of Quantitative Spectroscopy and Radiative Transfer 2011; 112(13): 2182-2192. DOI: 10.1016/j.jqsrt.2011.02.019.
  23. Romero I, Aizpurua J, Bryant GW, García de Abajo FJ. Plasmons in nearly touching metallic nanoparticles: Singular response in the limit of touching dimers. Opt Express 2016; 14(21): 9988-9999. DOI: 10.1364/OE.14.009988.
  24. Kurochka KS. Finite-element modeling of electromagnetic field distribution in the nearest zone of a spherical nanoparticle [In Russian]. Informatics 2016; 4(52): 33-41.
  25. Hellmers J, Wriedt T. Classification of software for the simulation of light scattering and realization within an internet information portal. Journal of Universal Computer Science 2010; 16(9): 1176-1189. DOI: 10.3217/jucs-016-09-1176.
  26. Oskooi F, Roundy D, Ibanescu M, Bermel P, Joannopoulos JD, Johnson SG. MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method. Computer Physics Communications 2010; 181: 687-702. DOI: 10.1016/j.cpc.2009.11.008.
  27. Mishchenko MI, Travis LD, Lacis AA. Scattering, absorption, and emission of light by small particles. Cambridge: Cambridge University Press; 2003. ISBN: 978-0-521-78252-4.
  28. Berenger JP. An effective PML for the absorption of evanescent waves in waveguides. IEEE Microwave and Guided Wave Letters 1988; 8(5): 188-190. DOI: 10.1109/75.668706.
  29. Hackbusch W. Iterative solution of large sparse systems of equations. 2nd ed. Springer; 2016. ISBN: 978-3-319-28481-1.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20