The connection between the phase problem in optics, focusing of radiation, and the Monge–Kantorovich problem
Kazanskiy N.L.
, Kharitonov S.I., Kozlova I.N., Moiseev M.A.

 

Samara National Research University, 34, Moskovskoye shosse, Samara, 443086, Samara, Russia,
IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Molodogvardeyskaya 151, 443001, Samara, Russia

Abstract:
We discuss the use of variational principles for solving the phase problem in optics. In this paper, we consider the connection between four fundamental problems: the phase problem in optics, the inverse problem of focusing coherent radiation, the Monge – Kantorovich optimal mass transport problem, and the variational methods for solving the equation of a modified Monge – Ampere equation. It is shown that the solution of the phase problem in optics within the framework of the asymptotic approach is closely related to the solution of the problem of optimal mass transport with a nonquadratic cost function.

Keywords:
optimal mass transport, phase problem in optics, Monge–Ampere equation.

Citation:
Kazanskiy NL, Kharitonov SI, Kozlova IN, Moiseev MA. The connection between the phase problem in optics, focusing of radiation, and the Monge–Kantorovich problem. Computer Optics 2018; 42(4): 574-587. DOI: 10.18287/2412-6179-2018-42-4-574-587.

References:

  1. Gerchberg R. Super-resolution through error energy reduction. Optica Acta 1974; 21: 709-720. DOI: 10.1080/713818946.
  2. Papoulis A. A new algorithm in spectral analysis and band-limited extrapolation. IEEE Transactions on Circuits and Systems 1975; 22(9): 735-742. DOI: 10.1109/TCS.1975.1084118.
  3. Sheppard David G., Hunt Bobby R., Marcellin Michael W. Iterative multiframe superresolution algorithms for atmospheric-turbulence-degraded imagery. J Opt Soc Am A 1998; 15(4): 978-992. DOI: 10.1364/JOSAA.15.000978.
  4. Soifer V, Kotlyar V, Doskolovich L. Iterative methods for diffractive optical elements computation. London: Taylor & Francis Ltd; 1997. ISBN: 0-7484-0634-4.
  5. Goncharsky AV, Danilov VA, Popov VV, Prokhorov AM, Sisakyan IN, Soifer VA, Stepanov VV. Solution of the inverse problem of laser radiation focusing in an certain curve [In Russian]. Doklady of the USSR Academy of Sciences 1983; 273(3): 605-608.
  6. Doskolovich LL, Kazanskiy NL, Kharitonov SI, Soifer VA. A method of designing diffractive optical elements focusing into plane areas. J Mod Opt 1996; 43(7): 1423-1433. DOI: 10.1080/09500349608232815.
  7. Soifer VA, ed. Methods for computer design of diffractive optical elements. New York: John Wiley & Sons, Inc; 2002. ISBN: 978-0-471-09533-0.
  8. Doskolovich LL, Dmitriev AYu, Kharitonov SI. Analytic design of optical elements generating a line focus. Opt Eng 2013; 52(9): 091717. DOI: 10.1117/1.OE.52.9.091707.
  9. Doskolovich LL, Bezus EA, Moiseev MA, Bykov DA, Kazanskiy NL. Analytical source-target mapping method for the design of freeform mirrors generating prescribed 2D intensity distributions. Opt Express 2016; 24(10): 10962-10971. DOI: 10.1364/OE.24.010962.
  10. Doskolovich LL, Moiseev MA, Byzov EV, Kravchenko SV. Computation of light field eikonal to focus into a set of points [In Russian]. Computer Optics 2014; 38(3): 443-448.
  11. Kantorovich LV. On the translocation of masses. J Math Sci 2006, 133(4): 1381-1382. DOI: 10.1007/s10958-006-0049-2.
  12. Bogachev VI, Kolesnikov AV. The Monge–Kantorovich problem: achievements, connections, and perspectives. Russian Mathematical Surveys 2012; 67(5): 785-890. DOI: 10.1070/RM2012v067n05ABEH004808.
  13. Glimm T, Oliker V. Optical design of single reflector systems and the Monge–Kantorovich mass transfer problem. J Math Sci 2003; 117(3): 4096-4108. DOI: 10.1023/A:1024856201493.
  14. Sulman MM, Williams JF, Russell RD. An efficient approach for the numerical solution of the Monge–Ampere equation. Applied Numerical Mathematics 2011; 61(3): 298-307. DOI: 10.1016/j.apnum.2010.10.006.
  15. Kravtsov AYu, Orlov YuI. Geometrical optics of inhomogeneous media. Berlin, Heidelberg: Springer-Verlag; 1990. ISBN: 978-3-642-84033-3.
  16. Koshlyakov NS, Smirnov MM, Gliner EB. Equations of mathematical physics in partial derivatives [In Russian] Moscow: “Vysshaya Shkola” Publisher; 1970.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20