Calculation of the angular momentum of an electromagnetic field inside a waveguide with absolutely conducting walls: ab initio
Kharitonov S.I., Volotovsky S.G., Khonina S.N.

 

Samara National Research University, 34, Moskovskoye shosse, Samara, 443086, Samara, Russia,
IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Molodogvardeyskaya 151, 443001, Samara, Russia

Abstract:
In this paper, explicit expressions for the momentum and angular momentum from the Noether's theorem (ab initio) are obtained. These expressions contain squared modules of the coefficients of a guided mode expansion, weighted by the phase singularity orders present. The expressions obtained are useful for quantizing the electromagnetic field in a waveguide.

Keywords:
angular momentum, Noether’s theorem, Lagrange-Euler equation, Umov-Poynting vector, modes of a cylindrical metal waveguide.

Citation:
Kharitonov SI, Volotovsky SG, Khonina SN. Calculation of the angular momentum of an electromagnetic field inside a waveguide with absolutely conducting walls. Computer Optics 2018; 42(4): 588-605. DOI: 10.18287/2412-6179-2018-42-4-588-605.

References:

  1. Bogoliubov NN, Shirkov DV. Introduction to the theory of quantized fields. 3rd ed. New York: John Wiley & Sons Inc; 1980. ISBN: 978-0-471-04223-5.
  2. Griffiths DJ. Introduction to Electrodynamics. 3rd ed. Upper Saddle River, NJ: Prentice Hall Inc; 1999. ISBN: 978-1-108-42041-9.
  3. Jackson JD. Classical electrodynamics. New York: John Wiley & Sons; 1999: 350. ISBN: 978-0-471-30932-1.
  4. Born M, Wolf E. Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light. 6th ed. Oxford, New York, Beijing, Frankfurt, Sao Paulo, Sydney, Tokyo, Toronto: Pergamon Press; 1980. ISBN: 978-0-08-026482-0.
  5. Lekner J. Invariants of electromagnetic beams. J Opt A: Pure Appl Opt 2004; 6(5): 204-209. DOI: 10.1088/1464-4258/6/2/008.
  6. Miller W. Symmetry and separation of variables. Cambridge: Cambridge University Press; 1984. ISBN: 978-0-521-30224-1.
  7. Kotlyar VV, Khonina SN, Wang Ya. Operator description of paraxial light fields [In Russian]. Computer Optics 2001; 21: 45-52.
  8. Khonina SN, Kotlyar VV, Soifer VA, Paakkonen P, Simonen J, Turunen J. An analysis of the angular momentum of a light field in terms of angular harmonics. J Mod Opt 2001; 48(10): 1543-1557. DOI: 10.1080/09500340108231783.
  9. Volke-Sepulveda K, Ley-Koo E. General construction and connections of vector propagation invariant optical fields: TE and TM modes and polarization states. J Opt A: Pure Appl Opt 2006; 8(10): 867-877. DOI: 10.1088/1464-4258/8/10/008.
  10. Kazanskiy NL, Kharitonov SI, Khonina SN. Joint solution of the Klein-Gordon and Maxwell's equations [In Russian]. Computer Optics 2012; 36(4): 518-526.
  11. Kharitonov SI, Khonina SN. Conversion of a conical wave with circular polarization into a vortex cylindrically polarized beam in a metal waveguide [In Russian]. Computer Optics 2018; 42(2): 197-211. DOI: 10.18287/2412-6179-2018-42-2-197-211.
  12. Koshiba M. Optical waveguide analysis. Tokyo: McGraw-Hill Inc; 1990. ISBN: 978-0-07-035368-8.
  13. Khonina SN, Volotovsky SG. Self-reproduction of multimode laser fields in weakly guiding stepped-index fibers. Optical Memory & Neural Networks 2007; 16(3): 167-177. DOI: 10.3103/S1060992X07030071.
  14. Khonina SN, Kotlyar VV, Soifer VA. Self-reproduction of multimode Hermite–Gaussian beams. Technical Physics Letters 1999; 25(6): 489-491. DOI: 10.1134/1.1262525.
  15. Loudon R, Baxter C. Contributions of John Henry Poynting to the understanding of radiation pressure. Proc R Soc A 2012; 468(2143): 1825-1838. DOI: 10.1098/rspa.2011.0573.
  16. Barnett SM. Optical angular-momentum flux. J Opt B Quantum Semiclass Opt 2002; 4(2): S7-S16. DOI: 10.1088/1464-4266/4/2/361.
  17. Volke-Sepulveda K, Garcés-Chávez V, Chávez-Cerda S, Arlt J, Dholakia K. Orbital angular momentum of high-order Bessel light beams. J Opt B Quantum Semiclass Opt 2002; 4(2): S82-S89. DOI: 10.1088/1464-4266/4/2/373.
  18. Lekner J. Invariants of three types of generalized Bessel beams. J Opt A: Pure Appl Opt 2004; 6(9): 837-843. DOI: 10.1088/1464-4258/6/9/004.
  19. Litvin IA, Dudley A, Forbes A. Poynting vector and orbital angular momentum density of superpositions of Bessel beams. Opt Express 2011; 19(18): 16760-16771. DOI: 10.1364/OE.19.016760.
  20. He H, Friese MEJ, Heckenberg NR, Rubinsztein-Dunlop H. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys Rev Lett 1995; 75(5): 826-829. DOI: 10.1103/PhysRevLett.75.826.
  21. He H, Heckenberg NR, Rubinsztein-Dunlop H. Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms. J Mod Opt 1995; 42(1): 217-223. DOI: 10.1080/09500349514550171.
  22. Friese MEJ, Enger J, Rubinsztein-Dunlop H, Heckenberg NR. Optical angular-momentum transfer to trapped absorbing particles. Phys Rev A 1996; 54(2): 1593-1596. DOI: 10.1103/PhysRevA.54.1593.
  23. Simpson NB, Dholakia K, Allen L, Padgett MJ. Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. Opt Lett 1997; 22(1): 52-54. DOI: 10.1364/OL.22.000052.
  24. Allen L, Padgett MJ. The Poynting vector in Laguerre–Gaussian beams and the interpretation of their angular momentum density. Opt Commun 2000; 184(1-4): 67-71. DOI: 10.1016/S0030-4018(00)00960-3.
  25. O’Neil AT, Padgett MJ. Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner. Opt Commun 2000; 185(1-3): 139-143. DOI: 10.1016/S0030-4018(00)00989-5.
  26. Soifer VA, Kotlyar VV, Khonina SN. Optical microparticle manipulation: Advances and new possibilities created by diffractive optics. Physics of Particles and Nuclei 2004; 35(6): 733-766.
  27. Skidanov RV, Kotlyar VV, Khonina SN, Volkov AV, Soifer VA. Micromanipulation in higher-order Bessel beams. Optical Memory & Neural Networks 2007; 16(2): 91-98. DOI: 10.3103/S1060992X07020051.
  28. Allen L, Beijersbergen MW, Spreeuw RJC, Woerdman JP Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys Rev A 1992; 45(11): 8185-8189. DOI: 10.1103/PhysRevA.45.8185.
  29. Van Enk SJ, Nienhuis G. Spin and orbital angular-momentum of photons. Europhys Lett 1994; 25(7): 497-501. DOI: 10.1209/0295-5075/25/7/004.
  30. Soskin MS, Gorshkov VN, Vasnetsov MV, Malos JT, Heckenberg NR. Topological charge and angular momentum of light beams carrying optical vortices. Phys Rev A 1997; 56(5): 4064-4075. DOI: 10.1103/PhysRevA.56.4064.
  31. Khonina SN, Kotlyar VV, Soifer VA, Paakkonen P, Turunen J. Measuring the light field orbital angular momentum using DOE. Optical Memory and Neural Networks 2001; 10(4): 241-255.
  32. Kotlyar VV, Khonina SN, Soifer VA, Wang Ya. Light field orbital angular moment measurement with the help of diffractive optical element [In Russian]. Avtometriya 2002; 38(3): 33-44.
  33. Leach J, Padgett MJ, Barnett SM, Franke-Arnold S, Courtial J. Measuring the orbital angular momentum of a single photon. Phys Rev Lett 2002; 88(25): 257901. DOI: 10.1103/PhysRevLett.88.257901.
  34. Khonina SN, Kotlyar VV, Soifer VA, Jefimovs K, Turunen J. Generation and selection of laser beams represented by a superposition of two angular harmonics. J Mod Opt 2004; 51(5): 761-773. DOI: 10.1080/09500340408235551.
  35. Leach J, Keen S, Padgett MJ, Saunter C, Love GD. Direct measurement of the skew angle of the Poynting vector in a helically phased beam. Opt Express 2006; 14(25): 11919-11924. DOI: 10.1364/OE.14.011919.
  36. Franke-Arnold S, Allen L, Padgett MJ. Advances in optical angular momentum. Laser Photon Rev 2008; 2(4): 299-313. DOI: 10.1002/lpor.200810007.
  37. Yao AM, Padgett MJ. Optical angular momentum: origins, behavior, and applications. Adv Opt Photon 2011; 3(2): 161-204. DOI: 10.1364/AOP.3.000161.
  38. Knyazev BA, Serbo VG. Beams of photons with nonzero orbital angular momentum projection: New results. Phys Usp 2018; 61(5). DOI: 10.3367/UFNe.2018.02.038306.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20