Spectroscopy of cascade multiresonator quantum memory
Perminov N.S., Petrovnin K.V., Gerasimov K.I., Kirillov R.S., Latypov R.R., Sherstyukov O.N., Moiseev S.A.

 

Kazan Quantum Center, KNRTU-KAI, Kazan, Russia,
Zavoisky Physical-Technical Institute of the Russian Academy of Sciences, Kazan, Russia,
Kazan Federal University, Kazan, Russia

Abstract:
We study spectral properties of a cascaded multiresonator microwave quantum memory integrated into a waveguide-resonator system. On the basis of experimental data, we reconstruct the internal parameters of the circuit under study, give estimates of quantum efficiency, and show the possibility of achieving optimal conditions for its realization.

Keywords:
quantum informatics, cascade multiresonator quantum memory, microwave quantum memory, resonator.

Citation:
Perminov NS, Petrovnin KV, Gerasimov KI, Kirillov RS, Latypov RR, Sherstyukov ON, Moiseev SA. Spectroscopy of cascade multiresonator quantum memory. Computer Optics 2018; 42(4): 614-619. DOI: 10.18287/2412-6179-2018-42-4-614-619.

References:

  1. Gu X, Kockum AF, Miranowicz A, Liu Y, Nori F. Microwave photonics with superconducting quantum circuits. Physics Reports 2017; 718-719: 1-102. DOI: 10.1016/j.physrep.2017.10.002.
  2. Hammerer K, Sørensen AS, Polzik ES. Quantum interface between light and atomic ensembles. Rev Mod Phys 2010; 82(2): 1041. DOI: 10.1103/RevModPhys.82.1041.
  3. Kazanskiy NL, Serafimovich PG, Khonina SN. Use of photonic crystal resonators for the differentiation of optical impulses in time. Computer Optics 2012; 36(4): 474-478.
  4. Kazanskiy NL, Serafimovich PG. Using photonic crystal nanobeam cavities for integration of optical signal. Computer Optics 2014; 38(2): 181-187.
  5. Serafimovich PG. Optical modulator based on coupled photonic crystal cavities. Computer Optics 2015; 39(2): 147-151. DOI: 10.18287/0134-2452-2015-39-2-147-151.
  6. Gavrilov AV, Soifer VA. Prospects of optical analog computer development. Computer Optics 2012; 36(2): 140-150.
  7. Moiseev ES, Moiseev SA. All-optical photon echo on a chip. Laser Phys Lett 2016; 14(1): 015202. DOI: 10.1088/1612-202X/aa4fc2.
  8. Moiseev SA, Gubaidullin FF, Kirillov RS, Latypov RR, Perminov NS, Petrovnin KV, Sherstyukov ON. Multiresonator quantum memory. Phys Rev A 2017; 95(1): 012338. DOI: 10.1103/PhysRevA.95.012338.
  9. Moiseev SA. Photon-echo-based quantum memory of arbitrary light field states. J Phys B: At Mol Opt Phys 2007; 40(19): 3877. DOI: 10.1088/0953-4075/40/19/008.
  10. De Riedmatten H, Afzelius M, Staudt MU, Simon C, Gisin N. A solid-state light-matter interface at the single-photon level. Nature 2008; 456(7223): 773-777. DOI: 10.1038/nature07607.
  11. Moiseev SA, Andrianov SN, Gubaidullin FF. Efficient multimode quantum memory based on photon echo in an optimal QED cavity. Phys Rev A 2010; 82(2): 022311. DOI: 10.1103/PhysRevA.82.022311.
  12. Walls DF, Milburn DJ, eds. Quantum Optics. Berlin, Heidelberg: Springer Science & Business Media; 2012. ISBN: 978-3-540-58831-3.
  13. Sandberg M, Wilson CM, Persson F, Bauch T, Johansson G, Shumeiko V, Duty T, Delsing P. Tuning the field in a microwave resonator faster than the photon lifetime. Appl Phys Lett 2008; 92(20): 203501. DOI: 10.1063/1.2929367.
  14. Perminov NS, Tarankova DY, Moiseev SA. Superefficient long-lived multiresonator quantum memory. Preprint Arxiv 2017; arXiv:1711.07014.
  15. Gerasimov KI, Moiseev SA, Zaripov RB. Microwave spin frequency comb memory protocol controlled by gradient magnetic pulses. Applied Magnetic Resonance 2017; 48(8): 795-804. DOI: 10.1007/s00723-017-0892-y.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20