Calculation of higher-order axial spherical aberrations of a high-aperture focusing holographic optical element with the corrected third-order spherical aberration. Part 2
Batomunkuev Yu.Ts., Dianova A.A., Maganakova T.V.


Optics and Optical Technologies Institute Siberian State University of Geosystems and Technologies, Novosibirsk, Russia

The paper presents and discusses the results of calculations of the radii of transverse fifth-, seventh- and ninth-order spherical aberrations in a multi-order on-axis HOE (holographic optical element), recorded using two divergent spherical waves. As examples, focusing transmission and reflection on-axis HOEs with relative apertures close to 1:1 in given infrared spectral ranges are considered. Analytical expressions are presented for calculating the minimum distance from the HOE to a polychromatic point source and to its image. We study in which way these distances change with increasing operating wavelength in the spectral range of interest. Examples of two different transmission HOEs with identical chromatic aberrations are presented in the atmospheric infrared windows in the ranges of 2.15 – 2.50 μm and 4.3 – 5.0 μm. It is pointed out that on the basis of these two HOEs, a dual-band holographic lens with working spectral ranges of 2.15 – 2.50 μm and 4.3 – 5.0 μm can be developed.

holographic optical element (HOE), chromatic aberration, higher-order spherical aberration, sphero-chromatic aberration.

Batomunkuev YuTs, Dianova AA. Maganakova TV. Calculation of higher-order axial spherical aberrations of a high-aperture focusing holographic optical element with the corrected third-order spherical aberration. Part 2. Computer Optics 2018; 42(4): 627-636. DOI: 10.18287/2412-6179-2018-42-4-627-636.


  1. Vizgaitis J. Third generation infrared optics. Proc SPIE 2008; 6940: 69400S. DOI: 10.1117/12.779095.
  2. Khatsevich TN, Parfyonova TV. Optical designing of dual-band infared lenses [In Russian]. Pribory 2014; 3: 21-27.
  3. Snow KA, Givens MP. Production of partially achromatic zone plates by holographic techniques. J Opt Soc Am 1968; 58(7): 871-874. DOI: 10.1364/JOSA.58.000871.
  4. Bennet SJ. Achromatic combinations of hologram optical elements. Appl Opt 1976; 15(2): 542-545. DOI: 10.1364/AO.15.000542.
  5. Mustafin KS. Calculation of achromatic holographic lens systems baced on thoughts lays principle [In Russian]. Optika i Spectroscopiya 1978; 44(1): 164-167.
  6. Bobrov ST, Greisukh GI, Turkevich YG. The diffraction optics elements and systems [In Russian]. Lningrad: “Mashinostroenie” Publisher; 1986.
  7. Latta JN. Fift-order hologram aberration. Appl Opt 1971; 10(3): 666-667. DOI: 10.1364/.10.000666.
  8. Mehta PC, Rao KSS, Hradaynath R. Higher order aberrations in hologaphic lenses. Appl Opt 1982; 21(24): 4553-4558. DOI: 10.1364/AO.21.004553.
  9. Batomunkuev YuTs. Aberrations of the ninth order of a off-axis volume hologram optical element [In Russian]; Polzunovsky Vestnik 2012; 3/2: 142-146.
  10. Yegorenko MP, Yefremov VS. Recearch of multispectral mirror-lens chromatism [In Russian]. Proceedings of V International Scientific Congress and Exhibition “GEO-Siberia 2009”; 2009; 5(1): 74-77.
  11. Tarasov VV, Torshina IP, Yakushenkov YuG. Infared systems of the third generation [In Russian]. Moscow: “Logos” Publisher; 2011. ISBN: 978-5-98704-539-8.
  12. Skidanov RV, Strelkov YS, Volotovsky SG. Harmonic lens with an annular aperture. Computer Optics 2017; 41(6): 842-847. DOI: 10.18287/2412-6179-2017-41-6-842-847.
  13. Mustafin KS. Holographic optics and perspectives of its application [In Russian]. In book: Materials of the fifth holography school: Leningrad: “LIYAF” Publisher; 1973.
  14. Park Y, Koch L, Song K, Park S, King G, Choi S. Miniaturization of a Fresnel spectrometer. J Opt A: Pure and Appl Opt 2008; 10(9): 095301. DOI: 10.1088/1464-4258/10/9/095301.
  15. Yuzhik IB, Malinin VV, Popov GN. Devices for detection and suppression of the optical and electro-optical means [In Russian]. Proceedings of IV International Scientific Congress and Exhibition “GEO-Siberia 2008”; 2008; 4(1): 148-152.
  16. Gorelik LI, Polesskiy NA, Semenchenko NA, Khamidullin KA, Yudovskaya AD. Dual-band infared lens [In Russian]. Advances in Applied Physics 2013; 1(2): 227-230.
  17. Gan . Theory and methods of calculation of hologram and kinoform optical elements [In Russian]. Lningrad: “GOI” Publisher; 1984.
  18. Bujnov GN, Mustafin KC. About one possibility of compensation of spherical aberration for holographic lens [In Russian]. Optics and Spectroscopy 1976; 41(2): 341-342.
  19. Batomunkuev YuTs, Dianova AA. Analysis of the operating spectral range of a multi-order HOE [In Russian]. Proceedings of the International Conference “SibOptika-2017” 2017; 1: 3-8.
  20. Batomunkuev YuTs, Dianova AA. Calculation of the higher-order axial spherical aberrations of a high-aperture focusing holographic optical element with the corrected third-order spherical aberration. Part 1 [In Russian]. Computer Optics 2018; 42(1): 44-53. DOI: 10.18287/2412-6179-2018-42-1-44-53.
  21. Batomunkuev YuTs, Dianova AA. Calculation of the spectral range of a focusing HOE with the corrected third-order spherical aberration [In Russian]. Computer Optics 2017; 41(2): 192-201. DOI: 10.18287/2412-6179-2017-41-2-192-201.
  22. Karpeev SV, Ustinov AV, Khonina SN. Design and analysis of a three-wave diffraction focusing doublet [In Russian]. Computer Optics 2016; 40(2): 173-178. DOI: 10.18287/2412-6179-2016-40-2-173-178.
  23. Karpeev SV, Alferov SV, Khonina SN, Kudryashov SI. Study of the broadband radiation intensity distribution formed by diffractive optical elements [In Russian]. Computer Optics 2014; 38(4): 689-694.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20