Dynamic-signature-based user authentication using a fuzzy classifier
Hodashinsky I.A., Kostyuchenko E.Yu., Sarin K.S., Anfilofiev A.E., Bardamova M.B., Samsonov S.S., Filimonenko I.V.

 

Tomsk State University of Control Systems and Radioelectronics, Tomsk, Russia

Abstract:
Dynamic signature verification is one of the most fast, intuitive, and cost effective tools for user authentication. Dynamic signature recognition uses multiple characteristics in the analysis of an individual’s handwriting. Dynamic characteristics include the velocity, acceleration, timing, pressure, and direction of the signature strokes, all analyzed in the x, y, and z directions. In this paper, the constant term and the first seven harmonics of the Fourier series expansion of the signature were used as features. The authentication systems development includes the following stages: preprocessing, feature selection, classification. Binary metaheuristic algorithms and deterministic algorithms are used to select attributes. The classification was carried out using a fuzzy classifier. The fuzzy classifiers parameters were tuned using continuous metaheuristic algorithms. The efficiency of the authentication system was verified on the author's database. The database contains 280 original variants of the signature of one author and 1281 variants of counterfeit signatures of seven authors. To assess the statistical significance of differences in the accuracy and error rates of the fuzzy classifiers formed by metaheuristic algorithms, the Mann-Whitney (-Wilcoxon) U-test to compare medians and the Kruskal-Wallis test were used.

Keywords:
pattern recognition, information processing, algorithms, feature selection, fuzzy classifier, signature recognition.

Citation:
Hodashinsky IA, Kostyuchenko EYu, Sarin KS, Anfilofiev AE, Bardamova MB, Samsonov SS, Filimonenko IV. Dynamic-signature-based user authentication using a fuzzy classifier. Computer Optics 2018; 42(4): 657-666. DOI: 10.18287/2412-6179-2018-42-4-657-666.

References:

  1. Ortega-Garcia J, Bigun J, Reynolds D, Gonzalez-Rodriguez J. Authentication gets personal with biometrics. IEEE Signal Process Mag 2004; 21(2): 50-62. DOI: 10.1109/MSP.2004.1276113.
  2. Gupta G, McCabe A. A review of dynamic handwritten signature verification. Technical report at James Cook University, Australia 1997.
  3. Zalasinski M, Cpalka K, Rutkowski L. Fuzzy-Genetic Approach to Identity Verification Using a Handwritten Signature. In Book: Gaweda A, Kacprzyk J, Rutkowski L, Yen G, eds. Advances in data analysis with computational intelligence. Cham: Springer; 2018: 375-394. DOI: 10.1007/978-3-319-67946-4_17.
  4. Anikin IV, Anisimova ES. Dynamic handwritten signature recognition based on fuzzy logic [In Russian]. Bulletin of Kazan State Power Engineering University 2016; 31(3): 48-64.
  5. Kholmatov A, Yanikoglu B. Identity authentication using improved online signature verification method. Pattern Recogn Lett 2005; 26(15): 2400-2408. DOI: 10.1016/j.patrec.2005.04.017.
  6. Sharma A, Sundaram S. An enhanced contextual DTW based system for online signature verification using vector quantization. Pattern Recogn Lett 2016; 84(C): 22-28. DOI: 10.1016/j.patrec.2016.07.015.
  7. Xia X, Chen Z, Luan F, Song X. Signature alignment based on GMM for on-line signature verification. Pattern Recogn 2017; 65(C): 188-196. DOI: 10.1016/j.patcog.2016.12.019.
  8. Khan MAU, Khan MK, Khan MA. Velocity-image model for online signature verification. IEEE Trans Image Process 2006; 15(11): 3540-3549. DOI: 10.1109/TIP.2006.877517.
  9. Razzak MI, Alhaqbani B. Multilevel fusion for fast online signature recognition using multi-section VQ and time modelling. Neural Computing and Applications 2015; 26(5): 1117-1127. DOI: 10.1007/s00521-014-1779-6.
  10. Cpalka K, Zalasinski M, Rutkowski L. A new algorithm for identity verification based on the analysis of a handwritten dynamic signature. Appl Soft Comput 2016; 43: 47-56. DOI: 10.1016/j.asoc.2016.02.017.
  11. Doroz R, Porwik P, Orczyk T. Dynamic signature verification method based on association of features with similarity measures. Neurocomputing 2016; 171: 921-931. DOI: 10.1016/j.neucom.2015.07.026.
  12. Nanni L, Maiorana E, Lumini A, Campisi P. Combining local, regional and global matchers for a template protected on-line signature verification system. Expert Systems with Applications 2010; 37(5) 3676-3684. DOI: 10.1016/j.eswa.2009.10.023.
  13. Jalalirad A, Tjalkens T. Using Feature-Based Models with Complexity Penalization for Selecting Features. J Signal Process Syst 2018; 90(2): 201-210. DOI: 10.1007/s11265-016-1152-3.
  14. Alkuhlani A, Nassef M, Farag I. Multistage feature selection approach for high-dimensional cancer data. Soft Computing 2017; 21(22): 6895-6906. DOI: 10.1007/s00500-016-2439-9.
  15. Bolón-Canedo V, Sánchez-Maroño N, Alonso-Betanzos A. Feature selection for high-dimensional. London: Springer; 2015. ISBN: 978-3-319-21857-1.
  16. Ivanov AI, Lozhnikov PS, Sulavko AE. Evaluation of signature verification reliability based on artificial neural networks, Bayesian multivariate functional and quadratic forms [In Russian]. Computer Optics 2017; 41(5): 765-774. DOI: 10.18287/2412-6179-2017-41-5-765-774.
  17. Kostyuchenko E, Gurakov M, Krivonosov E, Tomyshev M, Mescheryakov R, Hodashinsky I. Integration of Bayesian classifier and perceptron for problem identification on dynamics signature using a genetic algorithm for the identification threshold selection. In Book: Cheng L, Liu Q, Ronzhin A, eds. Advances in Neural Networks 2016: 620-627. DOI: 10.1007/978-3-319-40663-3_71.
  18. Mekh MA, Hodashinsky IA. Comparative analysis of differential evolution methods to optimize parameters of fuzzy classifiers. J Comput Syst Sci Int 2017; 56(4): 616-626. DOI: 10.1134/S1064230717040116.
  19. Rashedi E, Nezamabadi-pour H, Saryazdi S. GSA: A gravitational search algorithm. Information Sciences 2009; 179(13): 2232-2248. DOI: 10.1016/j.ins.2009.03.004.
  20. Mehrabian AR, Lucas C. A novel numerical optimization algorithm inspired from weed colonization. Ecological Informatics 2006; 1(4): 355-366. DOI: 10.1016/j.ecoinf.2006.07.003.
  21. Yang X-S, Deb S. Engineering optimisation by cuckoo search. International Journal of Mathematical Modelling and Numerical Optimisation 2010; 1(4): 330-343. DOI: 10.1504/IJMMNO.2010.035430.
  22. Yang X-S, Deb S. Cuckoo search: recent advances and applications. Neural Comput & Applic 2014; 24(1): 169-174. DOI: 10.1007/s00521-013-1367-1.
  23. Zhao R, Tang W. Monkey Algorithm for Global Numerical Optimization. Journal of Uncertain Systems 2008; 2(3): 165-176.
  24. Gandomi AH, Alavi AH. Krill herd: A new bio-inspired optimization algorithm. Communications in Nonlinear Science and Numerical Simulation 2012; 17(12): 4831-4845. DOI: 10.1016/j.cnsns.2012.05.010.
  25. Yu L, Liu H. Feature selection for high-dimensional data: A fast correlation-based filter solution. Proc 12th Int Conf Machine Learn (ICML-03) 2003: 856-863.
  26. Sarin KS, Hodashinsky IA. Identification of fuzzy classifiers based on the mountain clustering and cuckoo search algorithms. 2017 International Siberian Conference on Control and Communications (SIBCON) 2017. DOI: 10.1109/SIBCON.2017.7998553.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20