(45-1) 04 * << * >> * Russian * English * Content * All Issues

Supporting quadric method for collimated beams
A.A. Mingazov 1, L.L. Doskolovich 1,2, D.A. Bykov 1,2

IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
443001, Samara, Russia, Molodogvardeyskaya 151,
Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 946 kB

DOI: 10.18287/2412-6179-CO-783

Pages: 29-37.

Full text of article: Russian language.

We consider the problem of calculating a refractive element with two surfaces, forming a flat front and a given distribution of illumination. The supporting quadrics method is formulated for calculating a given optical element and it is shown that this method coincides with the gradient method for some functional related to the problem of the Monge-Kantorovich mass transfer problem. This enables adaptive selection of the step in the supporting quadric method. At the end of the article a design example is given.

geometric optics, non-imaging optics, inverse problem, Monge-Kantorovich mass transfer problem.

Mingazov AA, Doskolovich LL, Bykov DA. Supporting quadric method for collimated beams. Computer Optics 2021; 45(1): 29-37. DOI: 10.18287/2412-6179-CO-783.

This work was supported by Ministry of Science and Higher Education of the Russian Federation (FSRC "Crystallography and Photonics" RAS) in part of parts of the numerical implementation of the calculation algorithm and Russian Foundation for Basic Research (18-29-03067, 18-07-00982) in part of of formulating the supporting quadric method and proving the coincidence with the gradient method for the corresponding functional.


  1. Kochengin SA, Oliker VI. Computational algorithms for constructing reflectors. Comput Vis Sci 2003; 6: 15-21. DOI: 10.1007/s00791-003-0103-2.
  2. Doskolovich LL, Moiseev MA, Kazanskiy NL. On using a supporting quadric method to design diffractive optical elements. Computer Optics 2015; 39(3): 339-346. DOI: 10.18287/0134-2452-2015-39-3-339-346.
  3. Andreeva KV, Moiseev MA, Kravchenko SV, Doskolovich LL. Design of optical elements with TIR freeform surface. Computer Optics 2016; 40(4): 467-474. DOI: 10.18287/2412-6179-2016-40-4-467-474.
  4. Rubinstein J, Wolansky G. Intensity control with a free-form lens. J Opt Soc Am A 2007; 24(2): 463-469. DOI: 10.1364/JOSAA.24.000463.
  5. Glimm T, Oliker VI. Optical design of two-reflector systems, the Monge-Kantorovich mass transfer problem and Fermat’s principle. Indiana Univ Math J 2004; 53(5): 1255-1277. DOI:10.1512/iumj.2004.53.2455.
  6. Makarov B, Podkorytov A. Real analysis: Measures, Integrals and applications: Measures, integrals and applications. London: Springer-Verlag; 2013.
  7. Yadav NK. Monge-Ampere problems with non-quadratic cost function: application to freeform optics. Eindhoven: Technische Universiteit Eindhoven; 2018.
  8. Glimm T, Oliker VI. Optical design of single reflector systems and the Monge-Kantorovich mass transfer problem. J Math Sci 2003; 117: 4096-4108. DOI: 10.1023/A:1024856201493.
  9. Wang X-J. On design of a reflector antenna II. Calc Var Partial Differ Equ 2004; 20: 329-341. DOI: 10.1007/s00526-003-0239-4.
  10. Schwartzburg Y, Testuz R, Tagliasacchi A, Pauly M. High-contrast computational caustic design. ACM Trans Graph 2014; 33(4): 74. DOI: 10.1145/2601097.2601200.
  11. Aurenhammer F, Hoffmann F, Aronov B. Minkowski-type theorems and least-squares clustering. Algorithmica 1998; 20(1): 61-76. DOI: 10.1007/PL00009187.
  12. Merigot Q. A multiscale approach to optimal transport. Comput Graph Forum 2011; 30(5): 1584-1592. DOI: 10.1111/j.1467-8659.2011.02032.x.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20