(26) * << * >> * Russian * English * Content * All Issues

Multidimensional hypercomplex DFT algorithm implemented in Hamilton-Eisenstein codes

M.V. Aliev1, M.A. Chicheva2, M.F. Alieva1
1Adyghe State University 

2Image Processing Systems Institute of RAS 

 PDF, 115 kB

Pages: 99-101.

The paper synthesizes a “combined” algorithm for a multidimensional hypercomplex discrete Fourier transform of a real signal at base three with data representation in generalized Hamilton-Eisenstein codes. The complexity of arithmetic operations in commutative-associative hypercomplex algebra and its representation in generalized codes is determined. The computational complexity of the synthesized algorithm is evaluated.

DFT algorithm, multidimensional hypercomplex, Hamilton-Eisenstein codes, Fourier transform.

Aliev MV, Chicheva MA, Alieva MF. Multidimensional hypercomplex DFT algorithm implemented in Hamilton-Eisenstein codes. Computer Optics 2004; 26: 99-101.


  1. Aliev MV. Fast algorithms of d-dimensional DFT of real signal in commutative-associative algebras of 2d dimensionality over the real number field [In Russian]. Computer Optics 2002; 24: 130-136. 
  2. Aliev MV, Chicheva MA. Algorithms of two-dimensional DFT with data representation in hypercomplex algebra. Algebra and linear optimization [In Russian]. Proc Int Seminar Dedicated to the 90th Anniversary of S.N. Chernikov 2002: 18-26. 
  3. Furman YA, Krevetskii AV, Peredereev AK. Introduction to contour analysis. Applications for image and signal processing [In Russian]. Moscow: "Fizmatlit" Publisher; 2002. 
  4. Sommer G, ed. Geometric computing with Clifford algebra. Berlin: Springer-Verlag; 2001. 
  5. Labunets EV, Labunets VG, Egiazarian K, Astola J. Hypercomplex moments application in invariant image recognition. Proc 1998 Int Conf on Image Processing (ICIP98) 1998: 256-261.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20