(30) * << * >> * Russian * English * Content * All Issues

Hypergeometric Modes
V.V. Kotlyar1,2, R.V. Skidanov1,2, S.N. Khonina1,2, S.A. Balalaev1,2

1Image Processing Systems Institute оf the RAS,
2Samara State Aerospace University (SSAU)

 PDF, 176 kB

Pages: 16-22.

Full text of article: Russian language.

The paper analyzes a new family of paraxial laser beams forming an orthogonal basis. When propagating in homogeneous space, these beams retain their structure with the accuracy of the scale. The intensity distribution in the cross section of such beams is similar to the intensity distribution for Bessel modes and is represented as a set of concentric alternating light and dark rings. The complex amplitude of such beams is proportional to the degenerate (confluent) hypergeometric function, and therefore we called such beams hypergeometric modes. We formed such modes using a liquid crystal microdisplay.

paraxial laser beams, modes of homogeneous space, hypergeometric function.

Kotlyar VV, Skidanov RV, Khonina SN , Balalaev SA. Hypergeometric Modes. Computer Optics 2006; 30: 16-22.


  1. Miller W, Jr. Symmetry and separation of variables. Reading, MA: Addison-Wesley Publishing Company; 1977. ISBN: 978-0-201-13503-9.
  2. Durnin J Jr, Miceli JJ, Eberly JH. Diffraction-free beams. Phys Rev Lett 1987; 58(15): 1499-1501. DOI: 10.1103/PhysRevLett.58.1499.
  3. Siegman AE. Lasers. Sausalito, CA: University Science Book; 1986. ISBN: 0-935702-11-3.
  4. Bandres MA, Gutiérrez-Vega JC, Chávez-Cerda S. Parabolic nondiffracting optical wave fields. Opt Lett 2004; 29(1): 44-46. DOI: 10.1364/OL.29.000044.
  5. Gutiérrez-Vega JC, Bandres MA. Helmholtz-Gauss waves. J Opt Soc Am A 2005; 22(2): 289-298. DOI: 10.1364/JOSAA.22.000289.
  6. Bandres MA, Gutiérrez-Vega JC, Chávez-Cedra S. Vector Helmholtz-Gauss and vector Laplace-Gauss beams. Opt Lett 2005; 30(16): 2155-2157. DOI: 10.1364/OL.30.002155.
  7. Bandres MA, Gutiérrez-Vega JC. Ince-Gaussian beams. Opt Lett 2004; 29(2): 144-146. DOI: 10.1364/OL.29.000144.
  8. Bandres MA, Gutiérrez-Vega JC. Elegant Ince-Gaussian beams. Opt Lett 2004; 29(15): 1724-1726. DOI: 10.1364/OL.29.001724.
  9. Abramochkin EG, Volostnikov VG. Generalized Gaussian beams. J Opt A: Pure Appl Opt 2004; 6(5): S157. DOI: 10.1088/1464-4258/6/5/001.
  10. Kotlyar VV, Almazov AA, Khonina SN, Soifer VA, Elfstrom H, Turunen J. Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate. J Opt Soc Am A 2005; 22(5): 849-861. DOI: 10.1364/JOSAA.22.000849.
  11. Schwarz UT, Bandres MA, Gutiérrez-Vega J. Observation of Ince-Gaussian modes in stable resonators. Opt Lett 2004; 29(16): 1870-1872. DOI: 10.1364/OL.29.001870.
  12. Bentley JB, Devis JA, Bandres MA, Gutiérrez-Vega JC. Generation of helical Ince-Gaussian beams with a liquid-crystal display. Opt Lett 2006; 31(5): 649-651. DOI: 10.1364/OL.31.000649.
  13. Abramovitz M, Stegun IA, eds. Handbook of mathematical functions: With formulas, graphs, and mathematical tables. New York: Dover Publications, Inc; 1964.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20