(30) * << * >> * Russian * English * Content * All Issues

Two-dimensional approximants of photon quasicrystals obtained  by the method of holographic lithography
P.N. Dyachenko1, Y.V. Miklyaev1

1South Ural State University

 PDF, 163 kB

Pages: 23-29.

Full text of article: Russian language.

The paper studies the transition from a periodic to a quasi-periodic structure using approximants of quasicrystals in order to determine the disadvantages and advantages of the structure of quasicrystals. The study is limited to the structures that can be obtained by holographic lithography. Quasicrystals of the eighth and twelfth order were analysed, a comparison with square and hexagonal lattices was performed.

periodic structure, quasi-periodic structure, quasicrystals, holographic lithography.

Dyachenko PN, Miklyaev YV. Two-Dimensional Approximants of Photon Quasicrystals Obtained by the Method of Holographic Lithography. Computer Optics 2006; 30: 23-29.


  1. Bykov VP. Spontaneous emission in a periodic structure. Sov Phys JETP 1972; 35(2): 269-273.
  2. Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 1987; 58(20): 2059-2061. DOI: 10.1103/PhysRevLett.58.2059.
  3. Joh S. Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett 1987; 58(23): 2486-2488. DOI: 10.1103/PhysRevLett.58.2486.
  4. Hattori T, Tsurumachi N, Kawato S, Nakatsuka H. Photonic dispersion relation in a one-dimensional quasicrystal. Phys Rev B 1994; 50: 4220-4223. DOI: 10.1103/PhysRevB.50.4220.
  5. Kaliteevski M, Brand AS, Abram RA, Krauss TF, Millar P. Two-dimensional Penrose-tiled photonic quasicrystals: diffraction of light and fractal density of modes. J Mod Opt 2000; 47(11): 1771-1778. DOI: 10.1080/09500340008232430.
  6. Kaliteevski MA, Brand S, Abram RA, Krauss TF, Millar P, De la Rue RM. Diffraction and transmission of light in low refractive index Penrose-tiled quasicrystals. J Phys: Condens Matter 2001; 13(46): 10459-10470. DOI: 10.1088/0953-8984/13/46/314.
  7. Wang K, David S, Chelnokov A, Lourtioz JM. Photonic band gaps in quasicrystal-related approximant structures. J Mod Opt 2003; 50(13): 2095-2105. DOI: 10.1080/09500340308235260.
  8. Gauthier RC, Mnaymneh Kh. Photonic band gap properties of 12-fold quasicrystal determined through FDTD analysis. Opt Express 2005; 13(6): 1985-1998. DOI: 10.1364/OPEX.13.001985.
  9. Johnson SG, Joannopoulos JD. Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis. Opt Express 2001; 8(3): 173-190. DOI: 10.1364/OE.8.000173.
  10. Joannopoulus JD, Meade RD, Winn JN. Photonic crystals: Molding the flow of light. Princeton, NJ: Princeton University Press; 1995. ISBN: 978-0-691-03744-8.
  11. Romero-Vivas J, Chigrin DN, Lavrinenko AV, Sotomayor Torres CM. Resonant add-drop filter based on a photonic quasicrystal. Opt Express 2005; 13(3): 826-835. DOI: 10.1364/OPEX.13.000826.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20