Determination of parameters of geometric transformation to combine portrait images
E.V. Myasnikov

Image Processing Systems Institute оf the RAS, Samara, Russia,
Samara State Aerospace University (SSAU), Samara, Russia

Full text of article: Russian language.

This paper presents two methods of estimating geometric discrepancy parameters in portrait photography. The first method is based on the use of the Fourier transform and application of the correlation approach, whereas the second one is based on calculation of image moment characteristics. The paper presents experimental results for the methods based on portrait photography data. It shows the advantage of the method that is based on the Fourier transform. Recommendations on the use of these methods are given.

Key words:
geometric discrepancy , portrait photography, the Fourier transform, image moment characteristics.

Myasnikov E.V. Determination of parameters of geometric transformation to combine portrait images [In Russian]. Computer Optics 2007; 31(3): 77-82.


  1. Forsyth D, Ponce J. Computer vision: a modern approach [In Russian]. Moscow: “Williams” Publisher, 2004; 928 p.
  2. Pratt W. Digital image processing [Russian translation]. Moscow: “Mir” Publisher, 1982.
  3. Brown LG. A survey of image registration techniques. ACM Computing Surveys 1992; 24(4): 325–376.
  4. Gonzales R, Woods R. Digital image processing [in Russian]. Moscow: “Technosphere” Publisher, 2005; 1070 p.
  5. Barnea DI, Silverman HF. A class of algorithms for fast digital registration. IEEE Trans. Computers 1972; 21: 179-186.
  6. Wolberg G, Zokai S. Robust image registration using log-polar transform. Proc. of IEEE Intl. Conf. on Image Processing, 2000.
  7. Kuglin CD, Hines DC. The phase correlation image aligment method. Proc. Int. Conf. on Cybernetics and Society 1975; 163-165.
  8. Alliney S, Morandi C. Digital image registration using Projections. IEEE Trans. Pattern Analysis and Machine Intelligence. PAMI-8 1986; 2: 222-233.
  9. De Castro E, Morandi C. Registration of translated and rotated images using finite fourier transforms. IEEE Trans. Pattern Analysis and Machine Intelligence 1987; 3: 700–703.
  10. Reddy BS, Chatterji BN. An fft-based technique for translation, rotation, and scale-invariant image registration. IEEE Trans. Pattern Analysis and Machine Intelligence1996; 5(8): 1266–1270.
  11. Xie H, Hicks N, Keller GR, Huang H, Kreinovich V. An IDL/ENVI implementation of the FFT-based algorithm for automatic image registration. Computer & Geosciences 2003; 29: 1045-1055.
  12. Image registration using fourier phase matching. US Patent № 6373970.
  13. Chen Q, Defrise M, Deconinck F. Symmetric phaseonly matched filtering of fourier-mellin transforms for image registration and recognition. IEEE Trans. Pattern Analysis and Machine Intelligence, 1994; 16(12): 1156–1168.
  14. McGuire M. An image registration technique for recovering rotation, scale and translation parameters, 1998.
  15. Anisimov BV, Kurganov VD, Zlobin VK. Recognition and digital image processing [In Russian]. Moscow: “Vysshaya shkola” Publisher, 1983; 295 p.
  16. Soifer VA, ed. Methods of computer image processing [In Russian]. Moscow: “Fizmatlit” Publisher, 2001.
  18. Chernov AV, Chicheva MA, Gashnikov MV, Glumov NI, Myasnikov EV, Sergeev VV. Software tool system for digital image processing and analysis. Proc. 7th International Conference on Pattern Recognition and Image Analysis: New Information Technologies (PRIA-7-2004). St. Petersburg: 2004; II: 445-447.

© 2009, ИСОИ РАН
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ; тел: +7 (846) 332-56-22, факс: +7 (846 2) 332-56-20